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 POPULATION GROWTH AND TECHNOLOGICAL CHANGE:

 ONE MILLION B.C. TO 1990*

 MICHAEL KREMER

 The nonrivalry of technology, as modeled in the endogenous growth literature,
 implies that high population spurs technological change. This paper constructs and
 empirically tests a model of long-run world population growth combining this
 implication with the Malthusian assumption that technology limits population. The
 model predicts that over most of history, the growth rate of population will be
 proportional to its level. Empirical tests support this prediction and show that
 historically, among societies with no possibility for technological contact, those with
 larger initial populations have had faster technological change and population
 growth.

 Models of endogenous technological change, such as Aghion
 and Howitt [1992] and Grossman and Helpman [1991], typically
 imply that high population spurs technological change. This impli-
 cation flows naturally from the nonrivalry of technology. As Arrow
 [1962] and Romer [1990] point out, the cost of inventing a new
 technology is independent of the number of people who use it.
 Thus, holding constant the share of resources devoted to research,
 an increase in population leads to an increase in technological
 change. However, despite its ubiquity in the theoretical literature
 on growth, this implication is typically dismissed as empirically
 undesirable.

 This paper argues that the long-run history of population
 growth and technological change is consistent with the population
 implications of models of endogenous technological change. The
 first section of the paper constructs a highly stylized model in
 which each person's chance of being lucky or smart enough to
 invent something is independent of population, all else equal, so
 that the growth rate of technology is proportional to total popula-
 tion. The model also makes the Malthusian [1978] assumption that
 population is limited by the available technology, so that the
 growth rate of population is proportional to the growth rate of

 *I am grateful to Gene Grossman, Charles Jones, Gregory Mankiw, Paul
 Romer, Xavier Sala-i-Martin, James Thomson, many former classmates, an anony-
 mous referee, and especially Robert Barro and Elhanan Helpman for assistance
 with this paper. Participants in seminars at Brown University, University of
 Chicago, Harvard University, and Yale University, and at the AEA meetings and the
 NBER Economic Growth and Economic Fluctuations Meetings provided useful
 comments. Jill Woodworth provided capable research assistance. I was supported by
 a National Science Foundation graduate fellowship while writing this paper.

 a 1993 by the President and Fellows of Harvard College and the Massachusetts Institute of
 Technology.

 The Quarterly Journal of Economics, August 1993
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 682 QUARTERLY JOURNAL OF ECONOMICS

 technology. Combining these assumptions implies that the growth
 rate of population is proportional to the level of population.

 Figure I plots the growth rate of population against its level
 from prehistoric times to the present. The prediction that the
 population growth rate will be proportional to the level of popula-
 tion is broadly consistent with the data, at least until recently,
 when population growth rates have leveled off. The data, which are
 listed in Table I and discussed in Section IV, are drawn from
 McEvedy and Jones [1978], Deevey [1960], and the United Nations
 [various years]. While they are obviously subject to measurement
 error, there can be little doubt that the growth rate of population
 has increased over human history. Assuming that population has
 historically been limited by the level of technology, this much
 faster than exponential population growth is inconsistent with
 growth models which either assume constant exogenous technolog-
 ical change or generate it endogenously.

 The model outlined in Section I is similar to that of Lee [1988],
 who combines the Malthusian and Boserupian interpretations of
 population history to generate accelerating growth of population.
 Lee adopts Boserup's [1965] argument that people are forced to
 adopt new technology when population grows too high to be
 supported by existing technology. However, this view is difficult to
 reconcile with the simultaneous rise in income and rates of
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 POPULATION GROWTH AND TECHNOLOGY 683

 TABLE I

 POPULATION GROWTH: 1,000,000 B.C. TO 1990

 Year Pop. (millions) Growth rate Comments

 -1,000,000 0.125 0.00000297

 -300,000 1 0.00000439

 -25,000 3.34 0.000031

 -10,000 4 0.000045

 -5000 5 0.000336

 -4000 7 0.000693

 -3000 14 0.000657

 -2000 27 0.000616

 -1000 50 0.001386

 -500 100 0.001352

 -200 150 0.000623

 1 170 0.000559

 200 190 0.0

 400 190 0.000256

 600 200 0.000477

 800 220 0.000931

 1000 265 0.001886

 1100 320 0.001178

 1200 360 0.0 Mongol Invasions
 1300 360 -0.0002817 Black Death
 1400 350 0.0019420

 1500 425 0.002487

 1600 545 0.0 30 years war, Ming Collapse
 1650 545 0.002253

 1700 610 0.003316

 1750 720 0.004463

 1800 900 0.005754

 1850 1200 0.003964

 1875 1325 0.008164

 1900 1625 0.008306

 1920 1813 0.009164

 1930 1987 0.010772

 1940 2213 0.012832

 1950 2516 0.018226

 1960 3019 0.020151

 1970 3693 0.018646

 1980 4450 0.018101

 1990 5333

 The growth rate listed for period t is the average growth rate from t to t + 1. Since differences of a constant
 at all times between different data sets would distort growth rates, the 25,000 to 10,000 B.C. growth rate is based
 on Deevey's population estimates, although the population estimate for 10,000 B.C. is from McEvedy and Jones.
 Similarly, the 1900-1920 growth rate is based on the 1900-1925 average annual growth rate from McEvedy and
 Jones. Population figures from 1920 to 1940 and from 1950 to 1980 are from the 1952 and 1985/6 editions of the
 United Nations Statistical Yearbook, respectively. The 1990 population estimate is from the 1991 World
 Almanac [1991], which attributes it to the U. S. Bureau of the Census.
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 684 QUARTERLY JOURNAL OF ECONOMICS

 technological change over most of history, since it implies that
 increases in income should have led to reduced effort to invent new
 technologies. In contrast, this paper argues that even if each
 person's research productivity is independent of population, total
 research output will increase with population due to the nonrivalry
 of technology. As Kuznets [1960] and Simon [1977, 1981] argue, a
 higher population means more potential inventors. Lee's model
 and the simple model of Section I each make different functional
 form assumptions about the effect of population on technological
 change and of technology on population. While these restrictive
 assumptions make the models tractable, they limit their ability to
 match certain features of the data, such as the recent decline in
 population growth rates.

 Sections II and III generalize the simple model's assumptions
 about the determinants of research output and population, and
 show that for appropriate parameter values this generalized model
 is consistent with recent, as well as long-run, history. Section II
 generalizes the model to allow research productivity to increase
 with income, as seems appropriate in light of low research produc-
 tivity in some densely populated countries, such as China. It shows
 that this can generate a negative cross-section relationship be-
 tween population and research output, but leaves the time series
 implications of the model intact. Following Jones [1992], Section II
 further generalizes the model to allow research productivity to
 depend on population and the existing level of technology and
 shows that this generalized model can only be reconciled with the
 data if total technological change increases with population. An
 alternative model of exogenously increasing growth rates of technol-
 ogy, independent of population, is inconsistent with modern data.

 Section III shows that if population grows at finite speed when
 income is above its steady state, rather than adjusting instanta-
 neously, as in the simple model, per capita income will rise over
 time. If population growth declines in income at high levels of
 income, as is consistent with a variety of theoretical models and
 with the empirical evidence, this gradual increase in income will
 eventually lead to a decline in population growth.

 Section IV empirically tests the model. Following Von Foer-
 ster, Mora, and Amiot [1960], subsection IV.A shows that as the
 model predicts, the growth rate of population has been propor-
 tional to its level over most of history. Subsection IV.B confirms
 the cross-section implications of the model by showing that among
 technologically separate societies, those with higher initial popula-
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 POPULATION GROWTH AND TECHNOLOGY 685

 tion had faster growth rates of technology and population. A
 conclusion summarizes the argument and discusses implications
 for policy and for the endogenous growth literature.

 I. THE INTEGRATED MODEL: A SIMPLE VERSION

 This section quickly sketches a simple model of population
 growth and technological change along lines similar to those of Lee
 [1988]. It makes highly simplified assumptions about how technol-
 ogy affects population and how population affects the growth rate
 of technology, shows how they interact, and argues that a model
 combining these assumptions describes the data surprisingly well.

 Assume that output is given by

 (1) Y = ApaTl-a

 where A is the level of technology, p is population, and T is land,
 which is henceforth normalized to one.' Per capita income y
 therefore equals Apo-'.

 I assume that population increases above some steady state
 equilibrium level of per capita income, y-, and decreases below it.
 Diminishing returns to labor imply that a unique level of popula-
 tion, P, generates income of y:

 (2) p=A

 In this simplified model I assume that population adjusts instanta-
 neously to j. Section III makes the more realistic assumption that
 population adjusts to ji at finite speed. Note that increases in A,
 such as the invention of agriculture, shift the production function
 outward and raise the steady state populationp.

 Together with this Malthusian assumption about the determi-
 nation of population by technology, the model adopts Kuznets'
 [1960] and Simon's [1977, 1981] view that high population spurs
 technological change because it increases the number of potential
 inventors. In particular, this simple model assumes that, all else
 equal, each person's chance of inventing something is independent
 of population. Thus, in a larger population there will be propor-
 tionally more people lucky or smart enough to come up with new

 1. Allowing capital to enter the production function and setting the marginal
 product of capital equal to the discount rate does not substantially affect the
 analysis.
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 686 QUARTERLY JOURNAL OF ECONOMICS

 ideas.2 If research productivity per person is independent of
 population and if A affects research output the same way it affects
 output of goods (linearly, by definition), then the growth rate of
 technology will be

 (3) A/A = pg,

 where g represents research productivity per person. Section II
 discusses a more general research equation.

 Note that as long as technology can diffuse between countries,
 even with an arbitrarily long lag, equation (3) does not imply that
 countries with higher population will have faster technological
 change or economic growth. Belgium, for example, is rich not
 because it has invented a lot of technology, but because it has the
 human capital and social institutions that allow it to employ
 technology invented in other countries. Hence although Belgium
 has fewer people than Zaire, it has access to technologies invented
 by at least as many people. (Section IV shows that historically,
 among regions with no possibility for technological contact, those
 with higher populations had faster technological change.)

 Combining the research and population determination equa-
 tions is straightforward. Since population is limited by technology,
 the growth rate of population is proportional to the growth rate of
 technology. Since the growth rate of technology is proportional to
 the level of population, the growth rate of population must also be
 proportional to the level of population. To see this more formally,
 take the logarithm of the population determination equation, (2),
 and differentiate with respect to time:

 p 1 A

 p 1 - Ac

 Substitute in the expression for the growth rate of technology,

 from (3), to obtain

 (5) p g p 1- ap

 This prediction, that the growth rate of population will be
 proportional to the level of population, implies much faster than
 exponential growth. In contrast, if there were a constant exoge-

 2. Ted Baxter of the "Mary Tyler Moore Show" apparently agreed: he planned
 to have six children in the hope that one would solve the world's population
 problem.
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 POPULATION GROWTH AND TECHNOLOGY 687

 nous growth rate of technology, or an endogenous growth rate
 independent of population, there would be no relationship between

 the level of population and its growth rate, and population would
 grow exponentially. Similarly, biological models of animal popula-
 tions unconstrained by food supplies imply exponential growth. In
 biological models of constrained animal populations, the growth
 rate declines with population, as in the logistic pattern, p/p = 1 -
 p, rather than increasing with population, as this model implies.

 A first look at the data provided by Figure I indicates that this

 simple model matches the pattern of population growth over most
 of history. However, because of its restrictive assumptions, it does
 not match the recent leveling off and decline of population growth
 rates. The next two sections show that for appropriate parameter
 values, a generalized model is consistent with recent, as well as
 long-run, history.

 II. THE EFFECT OF POPULATION ON TECHNOLOGICAL CHANGE

 This section generalizes the research equation of Section I to
 allow research productivity to depend on income, on the level of
 technology, and on population. It shows that if research productiv-
 ity increases with income, the cross-section relationship between

 population and technological change is ambiguous, but that this
 does not alter the model's implication that technological change
 will increase as population grows over time. This section also shows
 that a general research equation proposed by Jones [1992], in
 which research productivity depends both on population and on the
 level of technology, is consistent with the history of population
 growth and technological change only if total research output
 increases at least proportionally with population. An alternative
 model, in which the growth rate of technology is independent of
 population and increases with the level of technology, is inconsis-
 tent with modern data.

 A. Research Productivity as a Function of Income

 Low research productivity in some poor, populous countries,
 such as India and China, suggests that research productivity may
 increase with income. As others, such as Young [1990], have
 argued, high population can reduce per capita income, and if
 research productivity is sensitive enough to income, this can
 reduce total research output. Thus, the cross-section relationship
 between population and technological change is ambiguous, as is
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 688 QUARTERLY JOURNAL OF ECONOMICS

 the effect of exogenous policy-induced increases in population on
 technological change. I argue below, however, that this does not
 alter the time series relationship between population and technol-
 ogy outlined in Section I.

 Assume that g, research productivity, equals ky8, where k and
 8 are positive parameters. Holding A constant and letting popula-
 tion vary due to temporary exogenous shocks, such as war, disease,
 or changes in tastes for children, the growth rate of technology will
 be proportional toybp, and sincey = Apd1, topl+(a-1)8. Hence total
 technological change increases with population if 8 < 1/(1 - a)
 and decreases with population if 8 > 1/(1 - a). A generous
 estimate of 1 - a, the share of land, might be about one-third, since
 the landlord's share in sharecropping contracts is usually less than
 one-half, and even extremely poor economies have nonagricultural
 activities to provide for food processing, clothing, and shelter. In
 this case, technological change would decrease in response to an
 exogenous increase in population only if each person's chance of
 inventing something increased faster than the cube of income. If

 capital entered the production function, research productivity
 would have to increase even more quickly in income for increases in
 population to reduce technological change.3

 If preferences for children and policies for encouraging or
 discouraging fertility vary among countries, then y, the level of
 income that generates zero population growth, will vary as well. If
 8 > 1/(1 - a), countries with more pro-natal policies, and hence
 lower y, would have lower total research output. Thus, the impact
 of pro-natal policies on total research output and the cross-section
 relationship between population and total research output are both
 ambiguous under this model.

 However, even if research productivity increases with income,
 technological change will still increase with population over time.
 In the model, population growth is not an exogenous event that
 causes per capita income to fall, but an endogenous response to
 technological improvement. Hence per capita income and research
 productivity remain constant over time as population increases.
 Over a long time series, therefore, with each person's research

 3. If capital enters the production function and the marginal product of capital
 is set equal to the discount rate, technological change decreases in response to an
 exogenous increase in population only if 8 > (a + y)IPy, where a is the share of labor
 and y the share of land. Thus, if a were 0.6, y were 0.1, and the share of capital were
 0.3, exogenous increases in population would only reduce total research output if
 each person's chance of inventing something increased faster than the seventh
 power of income.
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 POPULATION GROWTH AND TECHNOLOGY 689

 productivity held constant, the speed of technological change will
 be proportional to total population.4 Per capita research productiv-
 ity varies with economic and political institutions, and in cross-
 section, or over short time series, these fluctuations may be the
 primary determinants of variation in research output. As long as
 they are independent of population, however, there will be a
 positive long-run association between population and research
 output.

 B. Research Productivity as a Function of Technological Level

 Jones [1992] proposes a further generalization of the research
 equation that allows the existing level of technology to affect
 research output nonlinearly:

 (6) A = gpA.

 He argues that the assumption + = 1 is arbitrary, and that since it
 implies the growth rate of technology will be proportional to the
 level of population, it is inconsistent with constant or declining
 rates of TFP growth over the postwar period.5 Jones argues that
 + < 1 is more plausible. In this case, although the absolute
 increase in A will be proportional to the level of population, the
 steady state growth rate of technology will be proportional to the
 growth rate of population. To see why, note that

 (7) A/A = gp/A1-.

 With + <1 and constant population, A increases over time, but
 the ratio A/A declines. A/A can be constant only if the right-hand
 side of (7) is constant; that is, if the growth rate of A '- equals the

 growth rate of p, which implies (1 - A) A/A = fi/p. Thus, given
 constant population growth at rate n, the steady state growth rate
 of technology is A/A = n/(1 - 4k). Since population growth rates
 did not increase over the postwar period, and even declined a bit,
 Jones's model is consistent with constant growth rates of TFP, and
 may even help explain the productivity slowdown.

 4. If population did not adjust instantaneously to income, over short time
 periods there might be an insignificant, or even negative correlation between
 population and technological change since fluctuations in p p, and thus in income
 and research productivity, might be significant relative to variation inp.

 5. However, it is possible that 4) = 1, since there is evidence of a positive
 long-run trend in economic growth rates [Romer, 1986], and the stability of TFP
 growth during the postwar period may reflect temporary idiosyncratic factors,
 conceptual problems in measuring technological change, or the replacement of
 nonrival invention as the key constraint on growth by other, rival factors.
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 690 QUARTERLY JOURNAL OF ECONOMICS

 Note that the model's predictions for population growth do not

 substantially change under Jones's more general research equa-
 tion. Substituting his research equation, (7), into the population
 growth equation, (4),

 (8) -= gpA-1.
 p 1-a

 Usingy = y = Apa-1 to substitute for A,

 p 1-

 Thus, to take an extreme example, if A = gp so that each invention
 represents a constant absolute increment to the level of technology
 rather than a constant proportional increment, the growth rate of

 population will be proportional to pa, approximately p213, rather
 than to p. If capital is included in the production function, and if
 the marginal product of capital equals the discount rate, the
 growth rate of population is proportional top 1-Y(l-1), where -y is the
 share of land. Thus, if -y were 0.1, population growth would be
 proportional to p0 9. Thus, this more general research equation is
 consistent with both modern and historical data.

 C. Research Productivity as a Function of Population

 I have so far assumed that each person's research productivity
 is independent of population. However, this research equation can
 be further generalized to allow each person's research productivity
 to depend on the size of the population. Citing the concentration of
 innovation in cities, Kuznets [1960] argues that research productiv-
 ity per capita increases with population since higher population
 allows more intensive intellectual contact and greater specializa-
 tion. Even without these effects, both Aghion and Howitt [1992]
 and Grossman and Helpman [1991] find that total research output
 increases faster than proportionally with population due to in-
 creases in the size of the market. On the other hand, higher
 population might decrease research productivity by increasing
 duplication of effort. The general formulation A = gp A4 encom-
 passes both possibilities.

 Jones shows that this formulation accommodates a wide range
 of beliefs about the determinants of research output. Since y =
 Apaol, any research equation in which g = kyl can be represented
 in this form. Similarly, the assumption that A = kY, as in Barro
 and Sala-i-Martin [1992], which might hold if people invest a
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 POPULATION GROWTH AND TECHNOLOGY 691

 constant fraction of their income in a constant returns research
 sector, can be represented in this framework as A = kAPa. As Jones
 demonstrates, under this research equation, exogenous population
 growth at rate n generates steady state technological change of A/
 A = Tn/(1 - O. Combining this research equation with the

 Malthusian population determination equation, and substituting
 for A using y = Apa-I yields a growth rate of population propor-
 tional top-(1-0a)(l-4.

 Under this more general research equation, the finding that
 population growth rates are roughly proportional to population

 does not, by itself, separately identify T and +, the exponents on
 P and A. This suggests an alternative model consistent with
 the rough proportionality between population and its growth rate

 over most of history. If A = A(2-a)/(l-a), so T= 0, and 4o=
 (2 - ao)/(1 - a), which is approximately four for a = 2/3, popula-
 tion would have no effect on technology, but the growth rate of
 technology would increase exogenously at a speed that caused the
 growth rate of population to be proportional to its level. However,
 it is possible to rule out this alternative model. If + = 4, a doubling
 of A, such has occurred in the postwar period, would cause an
 eightfold increase in the growth rate of technology. In fact, it is
 possible to rule out any model with + > 1, since the change in the
 growth rate of technology over time in such a model, even in the
 case of no population growth, is

 (10) (A) = (- pA-1)2.

 Thus, if + > 1, not only is the growth rate constantly
 increasing, but it is increasing at a faster and faster pace, since A is
 increasing. This has not been the case empirically: growth rates of
 per capita income increased from 0.5 percent per year to 2 percent
 per year over the course of the nineteenth century, and they
 certainly have not increased by more than another 1.5 percent per
 year to more than 3.5 percent per year over the twentieth century.
 Hence + must be less than or equal to one. While time series
 evidence cannot exclude the possibility that A is a complicated
 function of A such that + was approximately four until recently,
 but is now less than one, this seems both less parsimonious and less
 plausible than a model in which research requires human activity.
 Moreover, such a model would require a decrease in the extent to
 which one innovation makes another more likely, which seems
 dubious, given the increased role of systematic science relative to
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 692 QUARTERLY JOURNAL OF ECONOMICS

 tinkering in modern technological progress. Section IV provides
 cross-section evidence against models in which technological change
 is independent of population by showing that among societies
 without technological contact, those with larger population had
 faster technological change.

 Under this generalized model, ji/p is proportional to
 p* -(1--1)(1-a). Sinceb/p has historically been roughly proportional to
 p, T - (1 - +)(l - a) must be roughly equal to one. Since + < 1,
 this implies that T must be approximately equal to, or greater
 than, one. Thus, the speed of technological change must increase at
 least in rough proportion to population.

 It is possible to fully identify + and T if one takes Jones's
 steady-state equation under exogenous population growth, A/A =
 Tn/(1 - +), as characterizing the modern period, and combines it

 with the historical evidence that T - (1 - ao)(1 - W) = 1 under
 Malthusian population determination.6 Assuming that TFP growth
 is 2 percent a year, population growth in the high g economies is 1

 percent a year, and a = %, these two equations imply that 2/5
 and P =6/5

 To summarize, a generalized version of the research equation
 is consistent with low research productivity in some populous
 countries, with the possibility that exogenous increases in popula-
 tion reduce research productivity, and with constant growth rates
 of technology in recent history. Moreover, a model combining this
 generalized research equation with the Malthusian population
 determination equation of Section I generates predictions for the
 growth of population over time that are qualitatively similar to
 those of the simple model of Section I, and thus match most of the
 history of population growth.

 III. POPULATION AS A FUNCTION OF TECHNOLOGY

 This section generalizes the Malthusian population determina-
 tion equation of Section I and combines it with the generalized
 research equation in a full model. The simplified model of Section I
 assumed that population adjusted instantaneously to its steady
 state. This section shows that if population grows at finite speed
 when income is above its steady state, per capita income will rise
 over time. If population growth declines in income at high levels of
 income, as is consistent with a variety of theoretical models and

 6. I thank Robert Lucas for suggesting this.
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 POPULATION GROWTH AND TECHNOLOGY 693

 with the empirical evidence, this gradual increase in income will
 eventually lead to a decline in population growth.

 Section I's assumption that population growth rates were

 infinite above the steady state level of income made the model
 tractable, but it is unrealistic. The full model makes the more
 plausible assumptions that population growth is a continuous
 function of income, n(y); that at zero income, population growth is
 negative due to high mortality; and that at some level of income,
 population growth is positive, since the human race would have
 died out otherwise. Under these assumptions, there will be some
 stable steady state level of income, y, such that n(y) = 0, and
 n'(Y) > 0. y need not be a physical subsistence level of income, and
 it could vary between countries, depending on incentives for fertility.

 Section I assumed that population growth monotonically
 increased in income. However, theory suggests that higher levels of
 income and technology may reduce fertility by increasing wages
 and thus the value of time [Schultz, 1981], by increasing education
 [Becker, 1981], by changing the pattern of intergenerational
 transfers [Willis, 1982], and by increasing the relative value of
 women's time [Galor and Weil, 1992]. Moreover, Lee's [1987]
 survey of empirical studies, and studies cited in Becker [1981],
 indicate that over most of history, at low levels of income,

 population growth increased with income, but that in recent times,
 when incomes have been higher, fertility has decreased with
 income. I shall therefore assume that population growth increases
 in income at low levels of income and then decreases in income at
 high levels of income, as depicted in Figure II. This pattern could
 arise, for example, if raising children entails costs both in goods
 and time, mortality falls with income, and utility equals A In
 (K - K*) + B In (c - c*) + c, where Kis the number of children and
 c is consumption. When describing the asymptotic behavior of the

 system, I shall generally assume that limniy, n(y) ? 0, although
 this assumption is not crucial to the analysis over the historical
 period discussed in this paper.

 The simple model of Section I can be considered as an

 approximation of the full model in which n'(Y) = oo, so that
 population adjusts instantaneously to fi, its steady state level. The
 differential equation for p therefore drops out, and only the
 differential equation for A remains. This single differential equa-
 tion approximation will be more accurate when the speed at which
 population adjusts to income is high relative to the speed of
 technological change. However, over time the speed of adjustment
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 n (y)
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 FIGURE II

 Population Growth Versus Income

 of population to income, which is a constant, declines relative to the
 rate of technological change, which is constantly increasing.7 The

 single differential equation approximation therefore breaks down
 at high enough levels of population, and it is necessary to examine
 the full two-differential equation model. This model cannot be
 solved analytically, but a phase diagram analysis demonstrates
 that per capita income increases over time, and that eventually this
 causes growth rates of population to fall.

 Before proceeding to the phase diagram analysis, it is worth
 discussing the intuition for why income must increase over time in
 the case of the simple research equation of Section I, in which +
 and T both equal one. Recall that per capita income could be stable
 only if the growth rate of population equaled 1/(1 - ao) times the
 growth rate of technology. Given a population p(O) at time 0, this

 implies that income could be stable only if l/p = gp(O)/(1 - a). As
 illustrated in Figure III, to generate population growth at this rate
 according to the n(y) function, income would have to equal y(O). If
 income were less than y(O), population growth would lag behind

 technological change, causing per capita income to grow. Con-
 versely, if income were greater than y(O), population growth would

 7. I implicitly assume that g > 0. In the absence of technological change, that
 is, if g = 0, the model reduces to a purely Malthusian system, and produces behavior
 similar to the logistic curve biologists use to describe animal populations facing fixed
 resources.

This content downloaded from 
�������������50.199.227.73 on Fri, 03 Oct 2025 22:38:09 UTC������������� 

All use subject to https://about.jstor.org/terms



 POPULATION GROWTH AND TECHNOLOGY 695

 gp(O)/(1-a)

 gp(l )/(l-a) n-y)

 y(O) y(l) y* y

 FIGURE III

 outstrip technological change, causing per capita income to fall.
 Now consider the situation at some future time, with population
 p(1). Income could now be constant only ifj3/p = gp(1)/(1 - a). But
 to generate population growth at this rate, income would have to be
 y(l). Hence there can be no steady state level of income. Income
 gradually increases over time with the rate of technological change,
 which itself increases with population. Once p is large enough that
 gp/(1 - a) > n(y*), population growth cannot keep up with
 technological change, the growth rate of per capita income in-
 creases, and population growth declines.

 The argument above is heuristic and limited to the 4) = 1, i =
 1 case, but a phase diagram analysis shows that under the general
 research production function there will be a period of increasing
 income and population growth rates, and that eventually income
 will reach y*, causing population growth rates to fall. Figure IV
 shows the phase diagram in population-income space, with one
 possible configuration of the y = 0 locus.8 The j3 = 0 locus is the
 horizontal line along which y = 57. As the arrows indicate, popula-
 tion increases for income greater than Y5, and decreases for income
 less than Y5.9 The 3 = 0 locus is given by taking logarithms of the

 8. I thank Elhanan Helpman for his great assistance with this phase diagram
 analysis.

 9. If limy, n(y) < 0, then there will be another b = 0 line at high income.
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 Phase Diagram in Population-Income Space

 equationy = Ap'-1, and differentiating with respect to time:

 (11) j3+aLlP

 Income is constant when the growth rate of technology equals
 (1 - a) times the growth rate of population. Substituting for each
 of these growth rates, the 3 = 0 locus is

 (12) y/y = gp*A+' + (a - 1)n(y) = 0,

 and since A = yp l-o, this can be rewritten as

 (13) 3/y = gp' (l-)(lay+- + (a - 1)n(y) = 0.

 As noted earlier, I assume that 4 < 1 and that * - (1 - 4)(1 - a) >
 0, which is a weak condition since a is close to one.

 To find the shape of the y = 0 locus, note that it must contain
 the point p = 0, y = 57. Since y/y increases in p, but can either
 increase or decrease iny, there can only be one level ofp on the 3 =
 0 locus corresponding to a given level of y, but there may be
 multiple levels of y on the locus corresponding to a given level of p.
 The 3 = 0 locus must lie above they = 5y line for allp > 0, because
 on that line technological change is positive and population growth
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 POPULATION GROWTH AND TECHNOLOGY 697

 is zero, so income is increasing. To the right of the 3 = 0 locus, the
 growth rate of technology is high relative to the growth rate of
 population, so j is positive. Correspondingly, to the left of they = 0

 locus, y' is negative.
 No matter where the economy starts, it winds up in region B.

 If it starts in region A, with high income relative to population,

 population increases quickly relative to technology. Per capita
 income therefore falls until the 3 = 0 locus is crossed and the
 trajectory enters region B. If the economy starts in region C, below
 thej3 = 0 locus, with low income relative to population, population
 declines, and per capita income rises until the trajectory crosses the
 j5 = 0 locus and enters region B. (It is impossible for any trajectory
 to cross the axis representing zero population, since the slope of a
 trajectory is

 (14) dy y3' ygpT-(l-(l-a)y'0l - (1 - cx)n(y)]
 dp j3 pn(y)

 Hence for y < y*, as p approaches zero, the trajectory becomes
 vertical, crosses thej3 = 0 axis, and enters region B.)

 Once the trajectory is in region B, it remains there, with
 population and income both increasing indefinitely. Income must
 eventually reachy*, the level above which population growth slows.
 To see why, note that since 3 > 0, if y is not asymptotically
 constant, it must eventually attain a level greater than y*. On the
 other hand, y cannot asymptote to a constant level which induces
 positive population growth, since this would lead to a positive
 steady state growth rate of technology and income, contradicting
 the original assumption of asymptotically constant income. Hence
 if per capita income asymptotes to a constant, it must be to a level
 that generates zero population growth, and is therefore greater

 thany*.
 As income rises above y*, population growth rates decline. If

 = 1, so that the level of technology enters the research
 production function linearly, growth rates of technology continue
 to increase because population continues to increase. If + < 1, so
 that the level of technology enters the research production func-
 tion less than linearly, growth rates of technology are likely to
 continue to increase for some period after y = y*, because of the
 delayed effects of the prior increases in population growth rates.
 The growth rate of A depends on the initial values ofA andy and on
 a weighted sum of past population growth rates, and asy increases
 above y*, this sum is increasing. Decreasing growth rates of
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 population and increasing growth rates of technology lead to an
 increase in the growth rate of income per capita.

 The asymptotic behavior of population depends on 4) and on
 lim yoo n(y). If limry.oo n(y) < 0, then population asymptotically
 approaches zero for any 4). If 4) = 1 and if n(y) goes to zero
 sufficiently quickly as income increases, population is asymptoti-
 cally constant. Since the growth rate of technology is proportional
 to the level of population, the growth rate of technology also

 asymptotes to a constant. On the other hand, if 4) = 1 and limy,.
 n(y) > 0, then both population and the growth rate of income
 increase without bound.

 If 4) < 1, as in Jones's research equation, the steady state
 growth rate of technology is Tn/(1 - 4)), given constant population
 growth at rate n. Since y = Apo,-, the steady state growth rate of
 per capita income will be

 (15) -= [_<+(a- 1)ln.

 In summary, if population adjusts to income at finite speed,
 then income will gradually rise over time as the growth rate of
 technology increases. If, in addition, population growth declines
 with income at high levels of income, there will eventually be a
 demographic transition, and, for plausible parameter values, steady
 state growth rates of population, technology, and income. A
 generalized version of the model is thus at least qualitatively
 consistent with the recent, as well as long-run, history of population.

 IV. EMPIRICAL TESTS

 This section tests the model with both time-series and cross-
 section population data. The first subsection tests the model's
 prediction that population growth rates will be roughly propor-
 tional to population levels over most of history, using an approach
 similar to that of Von Foerster, Mora, and Amiot [1960]. They do
 not build an explicit economic model (they were electrical engi-
 neers, not economists), but simply posit an equation in which
 population growth increases with population, show that it de-
 scribes the data well, extrapolate it into the future, and conclude,
 presumably in jest, that world population will become infinite on
 Friday, the thirteenth of November, 2026. As noted in the previous
 section, the generalized model predicts that population growth
 rates will eventually decline-due not to overpopulation and
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 POPULATION GROWTH AND TECHNOLOGY 699

 environmental collapse, but to increased income and declining
 fertility. The second subsection shows that among societies with-
 out technological contact, those with greater land area, and hence
 greater initial population, had faster technological change, as the
 model predicts.

 A. Testing the Model with Population Data

 The single differential equation approximation of the full
 model in Section I predicts that for most of history a regression of
 population growth on population will generate an intercept of zero
 and a coefficient on population of gI(1 - a). More generally, under
 the Jones research production function, the growth rate of popula-
 tion will be proportional to the level of population raised to the
 power T - (1 - a)(1 - 4+).

 In contrast, under the null hypothesis that population is
 limited by technological change that is independent of population,
 there would be no correlation between population levels and
 subsequent growth rates, so the coefficient on population would be
 zero, and the intercept would be positive. This section tests the
 model using the data on world population in Table I. Decennial
 estimates from 1920 on were compiled primarily from United
 Nations sources. The figures from 10,000 B.C. to 1900 are from
 McEvedy and Jones [1978]. Their estimates of population after 200
 B.C. were obtained by aggregating population estimates for individ-
 ual geographic regions taken from other authors. These in turn are
 based primarily on historical sources, such as Roman and Chinese
 censuses. In contrast, estimates of population prior to 200 B.C., are
 based on archaeological and anthropological evidence. Population
 figures before 10,000 B.C. are from Deevey [1960].10

 Clearly, the population estimates are subject to measurement
 error, but i.i.d. measurement error or other unmodeled i.i.d. shocks
 will not only make it harder to pick up any relationship between
 population growth and levels, but will actually bias the results
 against the integrated model. This is because undermeasurement
 of population in period t will cause measured growth from period t
 to period t + 1 to be greater than actual growth, so that it will
 appear that low levels of population cause high growth rates.

 A more serious problem would be systematic bias due to an
 implicit model in the minds of those who constructed the data.

 10. The main data set starts with homo erectus, one million years ago, since he
 invented tools, and therefore should be subject to the model.
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 TABLE II

 POPULATION GROWTH AS A FUNCTION OF POPULATIONa

 Dependent variable: GRPOP (standard errors in parentheses)

 (1) (2) (3) (4) (5)

 POP 0.524 0.537 0.504 0.548 1.11
 (0.0258) (0.0334) (0.0367) (0.0377) (0.155)

 CONS -2.26 E-3 -0.0323 3.79 E-4 -0.0571 -0.190
 (0.0355) (0.0538) (0.00115) (0.0252) (0.0600)

 Sample Full sample After -200 Full sample After -200 Evenly
 Spaced

 Weight unweighted unweighted RTGAP RTGAP unweighted
 n 37 27 37 27 11

 R2 0.92 0.91 0.62 0.79 0.850
 DW 1.10 1.14 0.84 1.52 2.42

 a. Population is in billions, and growth rates are in percentages, in this and subsequent tables.

 However, to the extent that McEvedy and Jones's discussion
 reveals any implicit model, it is not one similar to that of this paper,
 but a Malthusian model in which population increases after major
 exogenous technological changes, such as the agricultural revolu-
 tion, and then levels off again until the next round of inventions. If
 McEvedy and Jones fit any data points by exponential interpola-
 tion, that would also work against the integrated model, and in
 favor of the null hypothesis of constant exponential growth.

 The results reported in Table II strongly reject the null
 hypothesis that the coefficient on population is zero." Moreover, in
 most specifications the intercept is insignificantly different from
 zero, providing additional evidence for the model. To be sure that
 the early data points do not drive the regressions, Table II also
 reports results for the period after 200 B.C.

 Under the model, the residuals should be stationary, and
 indeed it is possible to reject the possibility of a unit root in the
 residuals. An Engle-Granger test gives a Dickey-Fuller t-statistic of

 11. Appropriate critical values for one-sided tests of the null against the
 alternative that the coefficient is greater than zero are given by the upper tail of the
 Dickey-Fuller distribution. Since these critical values are extremely low [Fuller,
 1976, p. 3731, the null is even more strongly rejected than implied by the already
 high t-statistics. Under the model, in which the coefficient on population is greater
 than zero, the regression standard errors are sensitive to the distribution of the
 underlying errors, but if these are normal, the usual t-statistic can be used to
 construct confidence intervals [Anderson, 1959]. I thank Jushan Bai, Andrew
 Bernard, and Lars Hansen for discussions on this issue.
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 TABLE III

 TESTS FOR HETEROSKEDASTICITY

 Dependent variable: squared residuals

 (standard errors in parentheses)

 (1) (2) (3) (4)
 Weighted Weighted
 regression regression

 OLS residuals OLS residuals residuals residuals

 CONSTANT 2.00 E-05 1.72 E-05 -6.94 E-04 -7.51 E-04
 (0.011) (0.012) (0.012) (0.012)

 1/Period length 1.02 1.02 1.07 1.07
 (0.248) (0.256) (0.256) (0.264)

 YEAR -4.89 E-11 -9.98 E-10
 (5.58 E-8) (5.76 E-8)

 n 37 37 37 37

 R2 0.32 0.32 0.33 0.33
 DW 1.74 1.74 1.70 1.70

 -4.25, compared with a 1 percent MacKinnon critical value of only
 4.23.

 Given the uneven period lengths, it is necessary to correct for
 heteroskedasticity. In theory, the variance of average growth
 should be approximately proportional to the reciprocal of the
 period length.12 Table III reports tests for heteroskedasticity,
 which indicate that the squared residuals are indeed roughly
 proportional to the reciprocal of the period length. The variable
 YEAR is insignificant in explaining the squared residuals, so there
 is little evidence that measurement error is considerably more
 severe in the early periods. While the proportional error in the
 early estimates of population and population growth is no doubt
 large, there can be no doubt that the magnitudes were tiny. The
 absolute error in the estimate of the population growth rate over
 the period 300,000-25,000 B.C. is thus probably smaller than that
 over the period 1600-1650, and it is the absolute, rather than the
 proportional error which determines the standard error of the
 regression. Obviously, this weighting is not perfect, but it seems a
 better option than putting equal weight on all periods. As a final

 12. This would be true under the null hypothesis with i.i.d. shocks, but it only
 holds approximately under the model, since a shock one period affects growth the
 next.
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 TABLE IV

 POPULATION GROWTH AS A FUNCTION OF POPULATION: OTHER DATA SETS

 Dependent variable: GRPOP (standard errors in parentheses)

 Durand Deevey Clark

 POP 0.816 0.522 0.497

 (0.0617) (0.0295) (0.0580)

 CONSTANT -0.194 0.0170 -0.0599

 (0.054) (0.0193) (0.0698)

 n 5 10 18

 R 2 0.98 0.98 0.82
 DW 3.28 2.30 2.07

 check, Table II reports a regression excluding the data at uneven
 intervals, leaving ten 200-year periods starting at 200 B.C. and one
 190-year period from 1800 to 1990.13

 Results are similar using other data sets. Deevey [1960], Clark
 [1977], and Durand [1977] have all published estimates of world
 population over long historical periods, which are replicated in the
 Appendix. I use McEvedy and Jones as the principal source since

 their work is most recent, they have the most data points, and their
 data points are at regular intervals. However, as Table IV shows,
 population levels are a significant determinant of growth rates in
 all three of the other data sets. While the discrepancies between the
 various estimates indicate the magnitude of measurement error,
 the results reported in Table IV suggest that the conclusion that
 population growth increases with population is robust to this
 measurement error.

 This paper uses world population data, since technologies such
 as the use of fire, the making of iron tools, and the domestication of
 the dog could diffuse over the long time periods analyzed in this
 paper. However, McEvedy and Jones also provide regional data,

 13. Note the higher coefficient on population in this regression. This is to be
 expected because the model predicts that the growth rate will increase during the
 course of the period, and with longer periods, the growth rate increases by more over
 the period. If population at the end of the period is double what it was at the
 beginning, the growth rate will be twice as high by then. While the model predicts
 the instantaneous growth rate of population, the population estimates are at
 discrete intervals. A previous version of the paper, available from the author,
 derives predicted population growth over discrete, uneven intervals under a
 deterministic model. It tests these predictions nonlinearly, and shows that the
 results are similar to those obtained under OLS. Further complications would arise
 under an explicitly stochastic model, because the variance of the error term would
 affect the expected path of population.
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 POPULATION GROWTH AND TECHNOLOGY 703

 TABLE V

 POPULATION GROWTH AS A FUNCTION OF POPULATION: EUROPE, CHINA, AND INDIA,

 200 B.C. TO 1975

 Dependent variable: GRPOP (standard errors in parentheses)

 Europe China India

 POPULATION 1.55 1.21 4.08
 (0.315) (0.413) (0.480)

 CONSTANT 0.0796 0.0207 -0.275
 (0.0645) (0.108) (0.086)

 n 22 22 22

 R2 0.55 0.30 0.78

 DW 1.55 1.73 0.63

 and as Table V shows, regressions using the smaller geographic
 regions of Europe, China, and India yield similar results.

 The hypothesis of stability of the heteroskedasticity weighted
 regression over time is consistent with the results of recursive
 residuals, recursive coefficients, CUSUM, and CUSUM squared
 tests, as shown in Figures V-VIII. The model predicts that
 population growth will eventually level off and decline due to
 increased income, and Figure I appears to suggest a break before
 the last two observations, but a Chow test finds little evidence for a
 break at 1970. (Periods are referred to by the date at the beginning
 of the period.) It is possible to find evidence for a break in an
 unweighted regression,14 and despite the weakness of the economet-
 ric evidence for a break, there is reason to think that the leveling off
 of population growth in recent decades differs in nature, if not
 magnitude, from the random variation the world has experienced
 throughout history. Population growth in recent years has been
 below the trend line not because of negative shocks from wars,
 epidemics, or tyranny, but because of increased income.

 The low Durbin-Watson statistics may be due to a break in 200
 B.C. Given a break in 1970, an additional break at 200 B.C. raises the
 Durbin-Watson statistic to 1.73 over the period -200 to 1960. A
 Chow test on the heteroskedasticity weighted regression provides

 14. The unweighted recursive residuals stay within or close to the two
 standard error band until 1960, and then move outside the band, indicating a break,
 and a Chow test indicates also indicates a break there. The CUSUM test is
 consistent with parameter stability over the entire period. The CUSUM of squares
 test moves outside the bands, but this may reflect its sensitivity to heteroskedastic-
 ity rather than shifts in the parameters.
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 706 QUARTERLY JOURNAL OF ECONOMICS

 no evidence of a break, but a test on the unweighted regression
 suggests a higher intercept before 200 B.C. Perhaps this could be
 attributed to unmodeled population growth in early history due to the
 settlement of new land1 and to biological evolution. Chow tests run
 without a preselected break point will be biased toward rejecting
 stability, so it is also possible that the apparent break is due to chance.

 A Chow test for a break at the industrial revolution in 1800
 with the full sample does not reject stability, but if the sample is cut
 in 1960, it is possible to find a break in 1800. It seems plausible that
 there was an increase in research productivity due either to
 socioeconomic factors that increased g, research productivity per
 capita, or to technological factors that led a group of related
 inventions to be discovered together, creating a region of the
 research function with high +.

 If the regression is not corrected for heteroskedasticity, it is
 possible to find periods in which the significant positive relation-
 ship between the level of population and its growth rate breaks
 down, but I do not think that this is too serious a problem with the
 model. If one considers unweighted regressions over successively
 lengthier samples, and uses standard t-statistics for a one-sided
 test, population becomes significant by 4000 B.C. and remains so
 until the Roman empire begins to decline in the second century.
 Population is significant again in 1000 and 1100. It becomes
 insignificant for three periods due to the negative outliers of the
 Black Death, which reduced Europe's population by a third, and
 the Mongol conquests, which reduced China's population from 115
 million in 1200 to 86 million in 1300. Population becomes signifi-
 cant again before the impact of the industrial revolution on world
 population. It is significant at all times after 1500, except for the
 period 1600-1650 with the simultaneous disasters of the Thirty
 Years' War, which devastated Central Europe, and the fall of the
 Ming dynasty, which reduced China's population from 160 million
 in 1600 to 140 million in 1650. If one uses the theoretically more
 appropriate upper-tail Dickey-Fuller critical values, population is
 significant through all these negative shocks.16

 Given the noisiness of the data and the, small number of data
 points, it is unsurprising that by searching over various subsam-
 ples it is possible to find periods over which the coefficient is not

 15. I am grateful to Abhijit Banerjee and Andrew Newman for this suggestion.
 16. This is based on the critical values in Fuller [1976] for a sample size of 25.

 For more precise estimates of the critical values for smaller samples, Monte Carlo
 estimates would be necessary.
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 TABLE VI

 ESTIMATES OF I - (1 - a) (1 - 4)

 GRPOP = CONST + K*POPP-(1-a)(l-)
 (standard errors in parentheses)

 (1) (2) (3) (4)

 CONST 4.51 E-4 6.25 E-4 -0.038 -0.036
 (0.00117) (0.0011) (0.031) (0.052)

 K 0.493 0.507 1.18 E-9 2.13 E-6

 (4.45 E-2) (4.74 E-2) (2.13 E-9) (3.12 E-6)

 P - (1 - a)(1 - ) 1.03 1.22 1.43 0.907
 (0.081) (0.112) (0.122) (0.0965)

 Weighting RTGAP RTGAP unweighted unweighted
 Sample -1,000,000 -1,000,000 to -1,000,000 to -1,000,000 to

 to 1980 1960 1980 1960

 DW 0.859 0.893 1.083 1.537

 R2 0.622 0.578 0.924 0.949
 n 37 35 37 35

 significant in some specifications. Since this regression is not
 corrected for heteroskedasticity, it is driven by fluctuations at the
 end of the sample. With a heteroskedasticity weighted regression,
 population is significant at all times after 4000 B.C. even using
 standard t-statistics. When one looks at long periods in which
 fluctuations average out, there is clear evidence of a secular
 long-run trend. Population growth was less than 0.00073 percent a

 year from 200,000 B.C.17 to 10,000 B.C.; 0.037 percent a year from
 10,000 B.C. to the year 1; and 0.073 percent a year from the year 1
 to 1600. So I do not think that the positive trend holds only after
 the industrial revolution. As noted earlier, the recursive residual,
 CUSUM, and CUSUM squared tests are consistent with stability of
 the relationship over the entire period. Even using standard t-
 statistics, population is significant in India by 1600 and in China by
 1750, before the impact of the industrial revolution on their
 populations. Finally, the cross-section evidence in subsection IV.B
 on regions that had no technological contact before 1500 indicates
 that the model applied before that date.

 Table VI reports results from using nonlinear least squares to
 estimate the model with the more general Jones research equation,

 17. Starting the sample with homo sapiens, 200,000 years ago, works against
 the model by producing a more rapid early growth rate. I use Deevey's population
 estimate for 300,000 years ago, which also works against the model.
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 708 QUARTERLY JOURNAL OF ECONOMICS

 so that population growth is proportional top*-(1-a)(1-?W. Since the
 last two observations may reflect the demographic transition, it

 also reports regressions using data up to 1960. While the likelihood

 function is fairly flat, so these estimates should be taken with a
 grain of salt, they suggest that T - (1 - (x)(1 - +) is greater than,

 or approximately equal to, one. Since +, the degree to which
 research output increases in the level of technology, cannot be

 greater than one, T is greater than, or approximately equal to, one.

 High R2'1 cannot be obtained with any increasing right-hand
 side variable, since population and its growth rate are not merely
 increasing variables, but variables that increase at an ever increas-
 ing rate. The year, for example, is almost insignificant as a
 right-hand side variable. Exp (year/k) can drive out population for

 some values of the constant k, but few obvious economic variables
 grew exponentially during this period. It is unlikely that per capita
 income would have much explanatory power, since its growth is
 unlikely to have matched that of population, which, for example,
 grew thirty-fivefold from 10,000 B.C. to 200 B.C.

 Perhaps it would be possible to explain the data through some
 other variable, or through a series of particular historical events
 that caused the growth rate of technology to increase at some
 periods and decrease at others, without including an effect of
 population on technology. However, given that a simple model,
 based on the economic theory of technology as a nonrival good, is
 consistent with the data over such a long period, it is not clear why one
 would want to abandon it for an alternative explanation of the data.

 B. Cross-Section Evidence from Technologically Separate Regions

 The model implies that if there were no technological contact

 between regions that started with similar technology and with
 population proportional to their land area, those regions with
 greater land area, and hence larger initial populations, would

 experience faster technological change. Hence they would attain
 higher levels of technology and greater population densities. To see
 why, integrate the population determination equation, dp/p2 = g
 dt/(1 - a), to obtain population at time t in region i, as a function

 of initial population, pio:18

 1 1l- (
 (16) pi(t) (l/pio) - (gt/(1 - x)) gpio

 18. Note that this would generate infinite population in finite time if it were
 not for the demographic transition discussed earlier. I thank Serge Marquie and
 Alan Taylor for assistance with these calculations.
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 POPULATION GROWTH AND TECHNOLOGY 709

 (By Jensen's inequality, the expected value of p(t) for any value of
 g/(I - a) would be larger in a model with shocks, since p(t) is a

 convex function ofp(0).) Dividing by land area, Ti gives

 1 1 - (x

 (17) dt = (/do) - (gtTAI/ - (x)) dogT

 where dit denotes the population density of region i at time t and do
 denotes the initial common population density. It is straightfor-

 ward to write an equivalent expression for Ait, the level of
 technology, as a function of land area, since dit is proportional to
 A'/1'-. The model also predicts that the elasticity of density with
 respect to land area will be (1 - &)dogtTi/(1 - ax- dogtTd) and
 thus will increase with land area, Ti. In contrast, under an
 alternative model of exogenously increasing growth rates of technol-
 ogy, independent of population, there would be no correlation
 between land area and levels of technology and population density.

 The melting of the polar ice caps at the end of the ice age,
 around 10,000 B.C., and the consequent flooding of land bridges,
 provide a natural experiment that nearly eliminated contact be-
 tween the old world, the Americas, mainland Australia, Tasmania,
 and Flinders Island.19 As the model predicts, in 1500, just after
 Columbus' voyage reestablished technological contact, the region
 with the greatest land area, the Old World, had the highest
 technological level. The Americas followed, with the agriculture,
 cities, and elaborate calendars of the Aztec and Mayan civilizations.
 Mainland Australia was third, with a population of hunters and
 gatherers. Tasmania, an island slightly smaller than Ireland,
 lacked even such mainland Australian technologies as the boomer-
 ang, fire-making, the spear-thrower, polished stone tools, stone
 tools with handles, and bone tools, such as needles [Diamond,
 1993].20 Flinders Island, near Tasmania, has only about 680 square
 kilometers of land, and according to radiocarbon evidence, its last
 inhabitants died out about 4000 years after they were cut off by the
 rising seas-suggesting possible technological regress.21 If techno-

 19. Different land bridges were flooded at different dates. Flinders Island was
 probably cut off only 8700 years ago.

 20. Diamond [1993] explicitly attributes Tasmania's low technological level to
 its low population.

 21. The Tasmanians' technological stock actually depreciated: they lost the
 ability to make bone tools, for example, which archaeological evidence shows they
 once possessed. On the other hand, they probably invented a crude boat about 4000
 years ago. Introducing depreciation of technology into the model could create zero
 or negative technological change if population or income, and hence research
 productivity, were low enough. This creates a richer model with multiple steady
 states and paths to extinction. While these might be relevant for some particular
 cases, such as Flinders Island, I believe they are of limited importance when looking
 at the world as a whole.
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 710 QUARTERLY JOURNAL OF ECONOMICS

 TABLE VII

 POPULATION AND POPULATION DENSITY, C. 1500

 Land area Population c. 1500

 (million km2) (millions) Population/(km2)

 Old Worlda 83.98 407 4.85

 Americasb 38.43 14 0.36

 Australiac 7.69 0.2 0.026

 Tasmania 0.068 0.0012-0.005 0.018-0.074

 Flinders Island 0.0068 0.0 0.0

 a. Sub-Saharan Africa is included in the old world, since there was some contact across the Sahara.
 b. There are a wide range of population estimates for the Americas and Australia at the time of European

 arrival, and McEvedy and Jones's are at the low end. However, higher estimates would not affect the rank
 ordering.

 c. Estimates for Tasmania are based on the Encyclopaedia Brittanica.

 logical change were actually independent of initial population, the

 chance that technology levels in the four inhabited regions would
 be ranked in this same order as land area is only 1 in 24. If Flinders
 Island is included, the chance drops to 1 in 120.

 Although their isolation was never as complete as that of the
 regions discussed above, ancient Britain and Japan also fit the
 model. When the land bridge between ancient Britain and Europe
 was cut off, around 5500 B.C., Britain fell technologically behind
 Europe.22 Agriculture was introduced around 4000 B.C. by neolithic
 immigrants from Europe and metallurgy was brought by immi-
 grants from the low countries around 2300 B.C. Ancient Japan was

 settled by paleolithic people from the mainland before its land
 connections to Asia were cut off by rising seas. Although its
 prehistory is murky, Japan's paleolithic people seem to have been
 very primitive: they lived in pits or caves rather than building even
 primitive structures, and no bone or horn artifacts associated with
 neolithic people in the rest of the world have been found in Japan.
 Immigrants from Asia bearing culture from Korea and China later
 brought more advanced technology to Japan.

 Table VII shows that estimated population density in 1500
 increases with land area, as the model predicts. Tasmania's raw

 population density appears similar to that of mainland Australia,
 but its population per unit of quality adjusted land is probably
 lower, since more than half of Australia is inhospitable desert,
 receiving less than 30 centimeters of rainfall a year, while most of
 Tasmania has relatively favorable conditions.

 22. Information on ancient Britain and Japan is from Encyclopaedia Britan-
 nica [1987].
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 POPULATION GROWTH AND TECHNOLOGY 711

 Using equation (17), it is possible to make quantitative
 predictions of each region's density in 1500, given some heroic

 assumptions. Assuming that technological contact was cut off in

 10,000 B.C., so t = 11,500, that do, initial density for all regions, was
 equal to McEvedy and Jones's estimated world population density

 of 0.030729 per square kilometer, and that the quality of land in all

 four areas was the same, so Ti corresponds to the entries in Table

 VII, then in order to generate a population density of 4.85 per

 square kilometer in the Old World in 1500, g/(1 - a() would have to

 equal 0.0335 per billion people, and this would have produced
 population densities of 0.0308 per square kilometer in Tasmania,

 0.0338 in mainland Australia, and 0.0564 in the Americas. The

 model's prediction that a given percentage discrepancy in land area

 between two regions will have more of an effect on population

 density at high levels of land area matches the data: mainland

 Australia's population density is of the same magnitude as Tasma-

 nia's despite having more than 100 times the land area, while the

 old world, with eleven times Australia's land area, has more than

 150 times its density. Moreover, the model correctly predicts that

 population densities in Tasmania and Australia would not increase

 appreciably over the initial density, do.23 However, the model
 underpredicts population in the Americas relative to that in the

 Old World, and it requires a higher level of g/(1 - a() than
 suggested by the regressions of subsection IV.A. These discrepan-

 cies may be due in part to underestimation of population in 10,000

 B.C.; to inclusion of sub-Saharan Africa in the Old World, despite

 the extremely limited technological contact across the Sahara; and
 to differences in land quality or date of technological separation.24

 However, they may also reflect problems with the simple 4 = 1, + =
 1, research equation and the model's assumption of instantaneous

 23. The calibration assumes that do = 0.307, but since the actual population
 density of Australia was less than this in 1500, it seems likely that Australia had a
 lower initial density, perhaps due to lower land quality, or due to becoming
 technologically separate earlier than 10,000 B.C.

 24. If population in 10,000 B.C. were 10 million, as some have estimated, and if
 sub-Saharan Africa were treated as a separate unit from the rest of the old world,
 the predicted population density in the Americas in 1500 given that in the old world
 would have been about 0.2 per square kilometer. America's discovery of agriculture
 may represent a group of related inventions with high 4.

 The lower value of g/(1 - a^) suggested by the time series regressions is due in
 part to the assumption that technology could diffuse across regions. If initial
 population were 10 million and if the world were taken as a unit, the estimated value
 of g/(1 - a^) would be 0.00849. Moreover, since equation (17) does not allow for a
 stochastic term, it will generate a higher estimate of g/(1 - a^) than a time series
 regression.
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 712 QUARTERLY JOURNAL OF ECONOMICS

 technological diffusion within regions.25 Given the strong assump-
 tions required for calibration, the low quality of the data, and the
 model's sensitivity to initial conditions, it is surprising that so
 crude a model matches the data this well.

 In sum, regions with greater land area, and hence greater initial
 population, attained higher technological levels and population densi-
 ties, as the model predicts. While we cannot precisely determine the
 nonlinear function relating initial population to final technological level

 and population density, the data are difficult to reconcile with models in
 which technological change is independent of population.

 V. CONCLUSION: IMPLICATIONS FOR POLICY AND THEORY

 Following Lee [1988], this paper constructs an integrated
 model of population growth and technological change. It assumes
 that each person's chance of inventing something is independent of
 population, so that total research output increases in proportion to
 population. Over the historical period when population was limited
 by the available technology, the model therefore predicts that the
 growth rate of population will be approximately proportional to the
 level of population. Per capita income gradually increases with the
 growth rate of technology, and eventually this causes population
 growth to slow. Empirical evidence supports the model: through
 most of history the growth rate of world population has been
 approximately proportional to the level of population. Moreover,
 among societies with no opportunity for technological contact,
 those with greater initial population attained higher technology
 levels and population densities. These facts are difficult to reconcile

 with prevailing growth models in which technological change is
 independent of population.

 The model of continuous acceleration of population and tech-
 nology proposed here can be contrasted with models involving
 discontinuous breaks, such as multiple equilibria models in which
 the economy either stagnates or experiences steady state growth.
 These models typically make few predictions about when the
 economy will be in each equilibrium. Moreover, their focus on
 technological stagnation as the alternative to steady state growth
 reduces most of history to the category of stagnation, despite such
 inventions as the wheel, Euclidean geometry, the plow, and the
 compass. It is ironic that growth theorists are building models with

 25. David Romer has pointed out that a model with + > 1 and T < 1 could
 match the population of the Americas, although it would be inconsistent with data
 from the modern period.
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 POPULATION GROWTH AND TECHNOLOGY 713

 sharp breaks at a time when most development economists reject
 the notion of takeoff and many economic historians stress continu-
 ity rather than a discontinuous industrial revolution.

 Future research may seek to quantitatively model the demo-
 graphic transition and to allow for slow diffusion of technology and

 for stochastic shocks to population and technology. This paper has
 abstracted from fluctuations in research productivity per capita, since it
 focuses on extremely long periods over which they may average out.

 However, the study of how economic and political institutions affect
 research productivity remains critical for understanding time series

 dynamics over shorter periods and cross-section differences between
 countries, since in these contexts the variance of research productivity
 per capita is often large relative to that of population.

 Although the model is designed to reflect historical, rather
 than current conditions, it is worth considering its implications for
 the present, both for policy and for growth theory. If research
 productivity per person depends on income, the short-run impact
 of pro-natal policies, such as tax allowances for children, on the
 speed of technological change is ambiguous. For example, child
 subsidies that increase birth rates might lower research productiv-
 ity per capita. However, in the long run this model implies that

 faster population growth leads to faster technological change. For
 + = 1, the growth rate of technology equals research productivity

 per capita times population, and the one-time fall in research
 productivity per capita caused by an increase in fertility will

 eventually be outweighed by the cumulative effect of population
 growth. For 4 < 1, Jones shows that the asymptotic growth rate of
 technology is proportional to the growth rate of population and is
 independent of research productivity per capita. However, while
 pro-natal policies may be growth-enhancing from the point of view
 of the world as a whole, individual countries may wish to let their
 citizens choose the privately optimal family size and to free ride off
 technological innovations made in other countries. Moreover, the
 model used in this paper does not allow for either exhaustible
 natural resources or for an ultimate limit on the level of technol-

 ogy, and in models incorporating these features, population growth
 could reduce long-run income per capita. Thus, the model should
 not be taken as a call for increased population. It does suggest,
 however, that economists should conduct further research to
 measure the growth and welfare effects of population growth under
 nonrival technology, rather than simply following conventional wisdom
 and concentrating on the negative effects of population growth.

 The model's implications for growth theory are clearer. Most
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 714 QUARTERLY JOURNAL OF ECONOMICS

 models of endogenous technological change imply that all else
 equal, higher population spurs technological change. This result, I
 believe, is due not to any quirk of modeling, but to the fundamental
 nonrivalry of technology as described by Romer. Perhaps it is
 possible to argue that technological change is independent of
 population, and to construct some other explanation of why the
 growth rate of population has historically been proportional to its
 level. Perhaps it is even possible to explain why among technologi-

 cally separate regions, those with higher population have had
 faster technological change. However, given that our theoretical

 models of technological change predict that higher population leads
 to faster technological change, what is noteworthy is not that other
 models might be able to explain the data, but that an extremely stylized
 model, based on theory, provides such a good description of the data
 over such a long period. Endogenous growth theorists have dismissed
 the population implications of their models as empirically untenable.
 This paper suggests that we should take them seriously.

 APPENDIX

 A. POPULATION GROWTH: EUROPE, CHINA, AND INDIA

 Europe Europe China China India India
 population growth population growth population growth

 Year (millions) rate (%) (millions) rate (%) (millions) rate (%)

 -200 26 0.0875 42 0.1157 31 0.0604

 1 31 0.0751 53 0.0869 35 0.0795

 200 36 -0.0748 63 -0.0864 41 0.0683

 400 31 -0.0879 53 -0.0291 47 0.0601

 600 26 0.0546 50 0.0000 53 0.0943
 800 29 0.1081 50 0.1388 64 0.1053

 1000 36 0.2007 66 0.4643 79 0.0494

 1100 44 0.2763 105 0.0910 83 0.0355

 1200 58 0.3090 115 -0.2906 86 0.0565

 1300 79 -0.2751 86 -0.0599 91 0.0639

 1400 60 0.3001 81 0.3060 97 0.0792

 1500 81 0.2107 110 0.3747 105 0.2513

 1600 100 0.0976 160 -0.2671 135 0.2107

 1650 105 0.2671 140 0.2671 150 0.1906

 1700 120 0.3083 160 0.6819 165 0.1177

 1750 140 0.5026 225 0.7660 175 0.1645

 1800 180 0.7735 330 0.5525 190 0.3821

 1850 265 0.6914 435 -0.1883 230 0.4127

 1875 315 0.8543 415 0.5401 255 0.5145

 1900 390 0.7463 475 0.4382 290 0.5168
 1925 470 0.3657 530 0.4290 330 1.1959

 1950 515 0.8378 590 1.3892 445 2.2119

 1975 635 835 775
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 POPULATION GROWTH AND TECHNOLOGY 715

 APPENDIX (CONTINUED)

 B. DURAND DATAa

 (Population figures are based on midpoints of Durand's ranges)

 Year Population (millions) Growth rate (%)

 1 300 0.00328
 1000 310 0.0996
 1500 510 0.1648
 1750 770 0.5201
 1900 1680 1.1567
 1975 4000

 C. DEEVEY DATA

 Year Population (millions) Growth rate (%)

 -1,000,000 0.125 0.000297
 -300,000 1 0.000439
 -25,000 3.34 0.0031
 -8000 5.32 0.0697
 -4000 86.5 0.0108
 1 133 0.0835

 1650 545 0.2895
 1750 728 0.4375
 1800 906 0.5750
 1900 1610 0.7985
 1950 2400

 D. CLARK DATA

 Year Population (millions) Growth rate (%)

 14 256 -0.00233
 350 254 -0.0277
 600 237 0.0482
 800 261 0.0351
 1000 280 0.1579
 1200 384 -0.0112
 1340 378 0.0762
 1500 427 0.1538
 1600 498 0.0710
 1650 516 0.4338
 1700 641 0.2628
 1750 731 0.3936
 1800 890 0.6282
 1900 1668 0.8270
 1920 1968 0.8612
 1930 2145 0.8701
 1940 2340 0.6574
 1950 2499 1.6221
 1962 3036

 a. Population figures are based on midpoints of Durand's ranges.

 DEPARTMENT OF ECONOMICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
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