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POPULATION GROWTH AND TECHNOLOGICAL CHANGE:
ONE MILLION B.C. TO 1990*

MICHAEL KREMER

The nonrivalry of technology, as modeled in the endogenous growth literature,
implies that high population spurs technological change. This paper constructs and
empirically tests a model of long-run world population growth combining this
implication with the Malthusian assumption that technology limits population. The
model predicts that over most of history, the growth rate of population will be
proportional to its level. Empirical tests support this prediction and show that
historically, among societies with no possibility for technological contact, those with
larger initial populations have had faster technoelogical change and population
growth.

Models of endogenous technological change, such as Aghion
and Howitt [1992] and Grossman and Helpman [1991], typically
imply that high population spurs technological change. This impli-
cation flows naturally from the nonrivalry of technology. As Arrow
[1962] and Romer [1990] point out, the cost of inventing a new
technology is independent of the number of people who use it.
Thus, holding constant the share of resources devoted to research,
an increase in population leads to an increase in technological
change. However, despite its ubiquity in the theoretical literature
on growth, this implication is typically dismissed as empirically
undesirable.

This paper argues that the long-run history of population
growth and technological change is consistent with the population
implications of models of endogenous technological change. The
first section of the paper constructs a highly stylized model in
which each person’s chance of being lucky or smart enough to
invent something is independent of population, all else equal, so
that the growth rate of technology is proportional to total popula-
tion. The model also makes the Malthusian [1978] assumption that
population is limited by the available technology, so that the
growth rate of population is proportional to the growth rate of

*] am grateful to Gene Grossman, Charles Jones, Gregory Mankiw, Paul
Romer, Xavier Sala-i-Martin, James Thomson, many former classmates, an anony-
mous referee, and especially Robert Barro and Elhanan Helpman for assistance
with this paper. Participants in seminars at Brown University, University of
Chicei%o, Harvard University, and Yale University, and at the AEA meetings and the
NBER Economic Growth and Economic Fluctuations Meetings provided useful
comments. Jill Woodworth provided capable research assistance. I was supported by
a National Science Foundation graduate fellowship while writing this paper.

© 1993 by the President and Fellows of Harvard College and the Massachusetts Institute of
Technology.
The Quarterly Journal of Economics, August 1993

This content downloaded from
50.199.227.73 on Fri, 03 Oct 2025 22:38:09 UTC
All use subject to https://about.jstor.org/terms



682 QUARTERLY JOURNAL OF ECONOMICS

technology. Combining these assumptions implies that the growth
rate of population is proportional to the level of population.

Figure I plots the growth rate of population against its level
from prehistoric times to the present. The prediction that the
population growth rate will be proportional to the level of popula-
tion is broadly consistent with the data, at least until recently,
when population growth rates have leveled off. The data, which are
listed in Table I and discussed in Section IV, are drawn from
McEvedy and Jones [1978], Deevey [1960], and the United Nations
[various years]. While they are obviously subject to measurement
error, there can be little doubt that the growth rate of population
has increased over human history. Assuming that population has
historically been limited by the level of technology, this much
faster than exponential population growth is inconsistent with
growth models which either assume constant exogenous technolog-
ical change or generate it endogenously.

The model outlined in Section I is similar to that of Lee [1988],
who combines the Malthusian and Boserupian interpretations of
population history to generate accelerating growth of population.
Lee adopts Boserup’s [1965] argument that people are forced to
adopt new technology when population grows too high to be
supported by existing technology. However, this view is difficult to
reconcile with the simultaneous rise in income and rates of
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POPULATION GROWTH AND TECHNOLOGY 683

TABLE I
PopuLATION GROWTH: 1,000,000 B.C. TO 1990
Year Pop. (millions) Growth rate Comments
—1,000,000 0.125 0.00000297
—300,000 1 0.00000439
—25,000 3.34 0.000031
—10,000 4 0.000045
-5000 5 0.000336
~4000 7 0.000693
-3000 14 0.000657
-2000 27 0.000616
-1000 50 0.001386
-500 100 0.001352
-200 150 0.000623
1 170 0.000559
200 190 0.0
400 190 0.000256
600 200 0.000477
800 220 0.000931
1000 265 0.001886
1100 320 0.001178
1200 360 0.0 Mongol Invasions
1300 360 —-0.0002817 Black Death
1400 350 0.0019420
1500 425 0.002487
1600 545 0.0 30 years war, Ming Collapse
1650 545 0.002253
1700 610 0.003316
1750 720 0.004463
1800 900 0.005754
1850 1200 0.003964
1875 1325 0.008164
1900 1625 0.008306
1920 1813 0.009164
1930 1987 0.010772
1940 2213 0.012832
1950 2516 0.018226
1960 3019 0.020151
1970 3693 0.018646
1980 4450 0.018101
1990 5333 —

The growth rate listed for period ¢ is the average growth rate from ¢ to ¢ + 1. Since differences of a constant
at all times between different data sets would distort growth rates, the 25,000 to 10,000 B.C. growth rate is based
on Deevey’s population estimates, although the population estimate for 10,000 B.c. is from McEvedy and Jones.
Similarly, the 1900-1920 growth rate is based on the 1900-1925 average annual growth rate from McEvedy and
Jones. Population figures from 1920 to 1940 and from 1950 to 1980 are from the 1952 and 1985/6 editions of the
United Nations Statistical Yearbook, respectively. The 1990 population estimate is from the 1991 World
Almanac {1991], which attributes it to the U. S. Bureau of the Census.
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684 QUARTERLY JOURNAL OF ECONOMICS

technological change over most of history, since it implies that
increases in income should have led to reduced effort to invent new
technologies. In contrast, this paper argues that even if each
person’s research productivity is independent of population, total
research output will increase with population due to the nonrivalry
of technology. As Kuznets [1960] and Simon [1977, 1981] argue, a
higher population means more potential inventors. Lee’s model
and the simple model of Section I each make different functional
form assumptions about the effect of population on technological
change and of technology on population. While these restrictive
assumptions make the models tractable, they limit their ability to
match certain features of the data, such as the recent decline in
population growth rates.

Sections II and III generalize the simple model’s assumptions
about the determinants of research output and population, and
show that for appropriate parameter values this generalized model
is consistent with recent, as well as long-run, history. Section II
generalizes the model to allow research productivity to increase
with income, as seems appropriate in light of low research produc-
tivity in some densely populated countries, such as China. It shows
that this can generate a negative cross-section relationship be-
tween population and research output, but leaves the time series
implications of the model intact. Following Jones [1992], Section II
further generalizes the model to allow research productivity to
depend on population and the existing level of technology and
shows that this generalized model can only be reconciled with the
data if total technological change increases with population. An
alternative model of exogenously increasing growth rates of technol-
ogy, independent of population, is inconsistent with modern data.

Section III shows that if population grows at finite speed when
income is above its steady state, rather than adjusting instanta-
neously, as in the simple model, per capita income will rise over
time. If population growth declines in income at high levels of
income, as is consistent with a variety of theoretical models and
with the empirical evidence, this gradual increase in income will
eventually lead to a decline in population growth.

Section IV empirically tests the model. Following Von Foer-
ster, Mora, and Amiot [1960], subsection IV.A shows that as the
model predicts, the growth rate of population has been propor-
tional to its level over most of history. Subsection IV.B confirms
the cross-section implications of the model by showing that among
technologically separate societies, those with higher initial popula-
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POPULATION GROWTH AND TECHNOLOGY 685

tion had faster growth rates of technology and population. A
conclusion summarizes the argument and discusses implications
for policy and for the endogenous growth literature.

I. THE INTEGRATED MODEL: A SIMPLE VERSION

This section quickly sketches a simple model of population
growth and technological change along lines similar to those of Lee
[1988]. It makes highly simplified assumptions about how technol-
ogy affects population and how population affects the growth rate
of technology, shows how they interact, and argues that a model
combining these assumptions describes the data surprisingly well.

Assume that output is given by

(1) Y = ApaTl—a,

where A is the level of technology, p is population, and T is land,
which is henceforth normalized to one.! Per capita income y
therefore equals Ap*-1.

I assume that population increases above some steady state
equilibrium level of per capita income, ¥, and decreases below it.
Diminishing returns to labor imply that a unique level of popula-
tion, p, generates income of y:

~v\1/(a=1)
@ p= (—yf{) .

In this simplified model I assume that population adjusts instanta-
neously to p. Section III makes the more realistic assumption that
population adjusts to p at finite speed. Note that increases in A,
such as the invention of agriculture, shift the production function
outward and raise the steady state population, p.

Together with this Malthusian assumption about the determi-
nation of population by technology, the model adopts Kuznets’
[1960] and Simon’s [1977, 1981] view that high population spurs
technological change because it increases the number of potential
inventors. In particular, this simple model assumes that, all else
equal, each person’s chance of inventing something is independent
of population. Thus, in a larger population there will be propor-
tionally more people lucky or smart enough to come up with new

1. Allowing capital to enter the production function and setting the marginal
pr(;(]luqt of capital equal to the discount rate does not substantially affect the
analysis.
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686 QUARTERLY JOURNAL OF ECONOMICS

ideas.? If research productivity per person is independent of
population and if A affects research output the same way it affects
output of goods (linearly, by definition), then the growth rate of
technology will be

3) A/A = pg,

where g represents research productivity per person. Section II
discusses a more general research equation.

Note that as long as technology can diffuse between countries,
even with an arbitrarily long lag, equation (3) does not imply that
countries with higher population will have faster technological
change or economic growth. Belgium, for example, is rich not
because it has invented a lot of technology, but because it has the
human capital and social institutions that allow it to employ
technology invented in other countries. Hence although Belgium
has fewer people than Zaire, it has access to technologies invented
by at least as many people. (Section IV shows that historically,
among regions with no possibility for technological contact, those
with higher populations had faster technological change.)

Combining the research and population determination equa-
tions is straightforward. Since population is limited by technology,
the growth rate of population is proportional to the growth rate of
technology. Since the growth rate of technology is proportional to
the level of population, the growth rate of population must also be
proportional to the level of population. To see this more formally,
take the logarithm of the population determination equation, (2),
and differentiate with respect to time:

p 1 A

p l-—aA’

Substitute in the expression for the growth rate of technology,
from (3), to obtain

4)

5) P__£
p 1-a

p.

This prediction, that the growth rate of population will be
proportional to the level of population, implies much faster than
exponential growth. In contrast, if there were a constant exoge-

2. Ted Baxter of the “Mary Tyler Moore Show’’ ap{mrently agreed: he planned
to }tl,?ve six children in the hope that one would solve the world’s population
problem.
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POPULATION GROWTH AND TECHNOLOGY 687

nous growth rate of technology, or an endogenous growth rate
independent of population, there would be no relationship between
the level of population and its growth rate, and population would
grow exponentially. Similarly, biological models of animal popula-
tions unconstrained by food supplies imply exponential growth. In
biological models of constrained animal populations, the growth
rate declines with population, as in the logistic pattern, p/p = 1 —
p, rather than increasing with population, as this model implies.

A first look at the data provided by Figure I indicates that this
simple model matches the pattern of population growth over most
of history. However, because of its restrictive assumptions, it does
not match the recent leveling off and decline of population growth
rates. The next two sections show that for appropriate parameter
values, a generalized model is consistent with recent, as well as
long-run, history.

I1. THE EFFECT OF POPULATION ON TECHNOLOGICAL CHANGE

This section generalizes the research equation of Section I to
allow research productivity to depend on income, on the level of
technology, and on population. It shows that if research productiv-
ity increases with income, the cross-section relationship between
population and technological change is ambiguous, but that this
does not alter the model’s implication that technological change
will increase as population grows over time. This section also shows
that a general research equation proposed by Jones [1992], in
which research productivity depends both on population and on the
level of technology, is consistent with the history of population
growth and technological change only if total research output
increases at least proportionally with population. An alternative
model, in which the growth rate of technology is independent of
population and increases with the level of technology, is inconsis-
tent with modern data.

A. Research Productivity as a Function of Income

Low research productivity in some poor, populous countries,
such as India and China, suggests that research productivity may
increase with income. As others, such as Young [1990], have
argued, high population can reduce per capita income, and if
research productivity is sensitive enough to income, this can
reduce total research output. Thus, the cross-section relationship
between population and technological change is ambiguous, as is
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688 QUARTERLY JOURNAL OF ECONOMICS

the effect of exogenous policy-induced increases in population on
technological change. I argue below, however, that this does not
alter the time series relationship between population and technol-
ogy outlined in Section I.

Assume that g, research productivity, equals ky?, where k and
d are positive parameters. Holding A constant and letting popula-
tion vary due to temporary exogenous shocks, such as war, disease,
or changes in tastes for children, the growth rate of technology will
be proportional to y®p, and since y = Ap>~1, to pl+@-15 Hence total
technological change increases with population if 8 < 1/(1 — o)
and decreases with population if 8 > 1/(1 — o). A generous
estimate of 1 — o, the share of land, might be about one-third, since
the landlord’s share in sharecropping contracts is usually less than
one-half, and even extremely poor economies have nonagricultural
activities to provide for food processing, clothing, and shelter. In
this case, technological change would decrease in response to an
exogenous increase in population only if each person’s chance of
inventing something increased faster than the cube of income. If
capital entered the production function, research productivity
would have to increase even more quickly in income for increases in
population to reduce technological change.?

If preferences for children and policies for encouraging or
discouraging fertility vary among countries, then ¥, the level of
income that generates zero population growth, will vary as well. If
3 > 1/(1 — a), countries with more pro-natal policies, and hence
lower ¥, would have lower total research output. Thus, the impact
of pro-natal policies on total research output and the cross-section
relationship between population and total research output are both
ambiguous under this model.

However, even if research productivity increases with income,
technological change will still increase with population over time.
In the model, population growth is not an exogenous event that
causes per capita income to fall, but an endogenous response to
technological improvement. Hence per capita income and research
productivity remain constant over time as population increases.
Over a long time series, therefore, with each person’s research

3. If capital enters the production function and the marginal product of capital
is set equal to the discount rate, technological change decreases in response to an
exogenous increase in 'I?ulation only if 8 > (a + y)/v, where a is the share of labor
and y the share of land. Thus, if a were 0.6, y were 0.1, and the share of capital were
0.3, exogenous increases in population would only reduce total research output if
each person’s chance of inventing something increased faster than the seventh
power of income.
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POPULATION GROWTH AND TECHNOLOGY 689

productivity held constant, the speed of technological change will
be proportional to total population.* Per capita research productiv-
ity varies with economic and political institutions, and in cross-
section, or over short time series, these fluctuations may be the
primary determinants of variation in research output. As long as
they are independent of population, however, there will be a
positive long-run association between population and research
output.

B. Research Productivity as a Function of Technological Level

Jones [1992] proposes a further generalization of the research
equation that allows the existing level of technology to affect
research output nonlinearly:

6 A = gpA®.

He argues that the assumption ¢ = 1 is arbitrary, and that since it
implies the growth rate of technology will be proportional to the
level of population, it is inconsistent with constant or declining
rates of TFP growth over the postwar period.®? Jones argues that
¢ < 1 is more plausible. In this case, although the absolute
increase in A will be proportional to the level of population, the
steady state growth rate of technology will be proportional to the
growth rate of population. To see why, note that

N A/A = gp/A1-¢.

With ¢ < 1 and constant population, A increases over time, but
the ratio A/A declines. A/A can be constant only if the right-hand
side of (7) is constant; that is, if the growth rate of A1-¢ equals the
growth rate of p, which implies (1 — ¢) A/A = p/p. Thus, given
constant population growth at rate n, the steady state growth rate
of technology is A/A = n/(1 — &). Since population growth rates
did not increase over the postwar period, and even declined a bit,
Jones’s model is consistent with constant growth rates of TFP, and
may even help explain the productivity slowdown.

If populatlon did not adjust instantaneously to income, over short time
perlods there might be an insignificant, or even negative correlation between
population and technological change since fluctuations in p/p, and thus in income
and research productivity, might be significant relative to variation inp.

5. However, it is possible that & = 1, since there is evidence of a positive
long-run trend in economic growth rates [Romer 19861, and the stability of TFP
growth during the postwar period may reflect temporary idiosyncratic factors,
conceptual problems in measuring technological change, or the replacement of
nonrival invention as the key constraint on growth by other, rival factors.
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690 QUARTERLY JOURNAL OF ECONOMICS

Note that the model’s predictions for population growth do not
substantially change under Jones’s more general research equa-
tion. Substituting his research equation, (7), into the population
growth equation, (4),

p 1
L -1
® p=1o L 8PA*TL
Usingy =y = Ap*~1 to substitute for A,
p_ 1-(1-@)1-$)5é-1

Thus, to take an extreme example, if A = gp so that each invention
represents a constant absolute increment to the level of technology
rather than a constant proportional increment, the growth rate of
population will be proportional to p®, approximately p?/3, rather
than to p. If capital is included in the production function, and if
the marginal product of capital equals the discount rate, the
growth rate of population is proportional to p1~v1-9) where v is the
share of land. Thus, if vy were 0.1, population growth would be
proportional to p%9. Thus, this more general research equation is
consistent with both modern and historical data.

C. Research Productivity as a Function of Population

I have so far assumed that each person’s research productivity
is independent of population. However, this research equation can
be further generalized to allow each person’s research productivity
to depend on the size of the population. Citing the concentration of
innovation in cities, Kuznets [1960] argues that research productiv-
ity per capita increases with population since higher population
allows more intensive intellectual contact and greater specializa-
tion. Even without these effects, both Aghion and Howitt [1992]
and Grossman and Helpman [1991] find that total research output
increases faster than proportionally with population due to in-
creases in the size of the market. On the other hand, higher
population might decrease research productivity by increasing
duplication of effort. The general formulation A = gp¥A¢ encom-
passes both possibilities.

Jones shows that this formulation accommodates a wide range
of beliefs about the determinants of research output. Since y =
Ape~1, any research equation in which g = ky® can be represented
in this form. Similarly, the assumption that A = kY, as in Barro
and Sala-i-Martin [1992], which might hold if people invest a
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POPULATION GROWTH AND TECHNOLOGY 691

constant fraction of their income in a constant returns research
sector, can be represented in this framework as A = kAP As Jones
demonstrates, under this research equation, exogenous population
growth at rate n generates steady state technological change of A/
A = ¥n/(1 — ¢). Combining this research equation with the
Malthusian population determination equation, and substituting
for A using y = Ap*~! yields a growth rate of population propor-
tional tOpq'_(l—“)(l_¢)~

Under this more general research equation, the finding that
population growth rates are roughly proportional to population
does not, by itself, separately identify ¥ and ¢, the exponents on
P and A. This suggests an alternative model consistent with
the rough proportionality between population and its growth rate
over most of history. If A = A@- /(-0 g0 ¥ = 0, and ¢ =
(2 — a)/(1 — a), which is approximately four for a = 2/3, popula-
tion would have no effect on technology, but the growth rate of
technology would increase exogenously at a speed that caused the
growth rate of population to be proportional to its level. However,
it is possible to rule out this alternative model. If = 4, a doubling
of A, such has occurred in the postwar period, would cause an
eightfold increase in the growth rate of technology. In fact, it is
possible to rule out any model with & > 1, since the change in the
growth rate of technology over time in such a model, even in the
case of no population growth, is

J (A

(10) o (Z) = (¢ — 1)(gp¥A* )2
Thus, if & > 1, not only is the growth rate constantly
increasing, but it is increasing at a faster and faster pace, since A is
increasing. This has not been the case empirically: growth rates of
per capita income increased from 0.5 percent per year to 2 percent
per year over the course of the nineteenth century, and they
certainly have not increased by more than another 1.5 percent per
year to more than 3.5 percent per year over the twentieth century.
Hence ¢ must be less than or equal to one. While time series
evidence cannot exclude the possibility that A is a complicated
function of A such that ¢ was approximately four until recently,
but is now less than one, this seems both less parsimonious and less
plausible than a model in which research requires human activity.
Moreover, such a model would require a decrease in the extent to
which one innovation makes another more likely, which seems
dubious, given the increased role of systematic science relative to
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692 QUARTERLY JOURNAL OF ECONOMICS

tinkering in modern technological progress. Section IV provides
cross-section evidence against models in which technological change
is independent of population by showing that among societies
without technological contact, those with larger population had
faster technological change.

Under this generalized model, p/p is proportional to
pY¥-1-91-9_Since p/p has historically been roughly proportional to
p, ¥ — (1 — $)(1 — o) must be roughly equal to one. Since ¢ < 1,
this implies that ¥ must be approximately equal to, or greater
than, one. Thus, the speed of technological change must increase at
least in rough proportion to population.

It is possible to fully identify ¢ and ¥ if one takes Jones’s
steady-state equation under exogenous population growth, A/A =
¥n/(1 — ¢), as characterizing the modern period, and combines it
with the historical evidence that ¥ — (1 — a)(1 — ¢) = 1 under
Malthusian population determination.® Assuming that TFP growth
is 2 percent a year, population growth in the high g economies is 1
percent a year, and o = %3, these two equations imply that & = 24
and ¥ = 64,

To summarize, a generalized version of the research equation
is consistent with low research productivity in some populous
countries, with the possibility that exogenous increases in popula-
tion reduce research productivity, and with constant growth rates
of technology in recent history. Moreover, a model combining this
generalized research equation with the Malthusian population
determination equation of Section I generates predictions for the
growth of population over time that are qualitatively similar to
those of the simple model of Section I, and thus match most of the
history of population growth.

II1. POPULATION AS A FUNCTION OF TECHNOLOGY

This section generalizes the Malthusian population determina-
tion equation of Section I and combines it with the generalized
research equation in a full model. The simplified model of Section I
assumed that population adjusted instantaneously to its steady
state. This section shows that if population grows at finite speed
when income is above its steady state, per capita income will rise
over time. If population growth declines in income at high levels of
income, as is consistent with a variety of theoretical models and

6. Ithank Robert Lucas for suggesting this.
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POPULATION GROWTH AND TECHNOLOGY 693

with the empirical evidence, this gradual increase in income will
eventually lead to a decline in population growth.

Section I's assumption that population growth rates were
infinite above the steady state level of income made the model
tractable, but it is unrealistic. The full model makes the more
plausible assumptions that population growth is a continuous
function of income, n(y); that at zero income, population growth is
negative due to high mortality; and that at some level of income,
population growth is positive, since the human race would have
died out otherwise. Under these assumptions, there will be some
stable steady state level of income, ¥, such that n(y) = 0, and
n'(y) > 0.y need not be a physical subsistence level of income, and
it could vary between countries, depending on incentives for fertility.

Section I assumed that population growth monotonically
increased in income. However, theory suggests that higher levels of
income and technology may reduce fertility by increasing wages
and thus the value of time [Schultz, 1981], by increasing education
[Becker, 1981], by changing the pattern of intergenerational
transfers [Willis, 1982], and by increasing the relative value of
women’s time [Galor and Weil, 1992]. Moreover, Lee’s [1987]
survey of empirical studies, and studies cited in Becker [1981],
indicate that over most of history, at low levels of income,
population growth increased with income, but that in recent times,
when incomes have been higher, fertility has decreased with
income. I shall therefore assume that population growth increases
in income at low levels of income and then decreases in income at
high levels of income, as depicted in Figure II. This pattern could
arise, for example, if raising children entails costs both in goods
and time, mortality falls with income, and utility equals A In
(K- K*) + Bln(c — ¢*) + ¢, where K is the number of children and
¢ is consumption. When describing the asymptotic behavior of the
system, I shall generally assume that lim,_,., n(y) > 0, although
this assumption is not crucial to the analysis over the historical
period discussed in this paper.

The simple model of Section I can be considered as an
approximation of the full model in which n'(y) = =, so that
population adjusts instantaneously to p, its steady state level. The
differential equation for p therefore drops out, and only the
differential equation for A remains. This single differential equa-
tion approximation will be more accurate when the speed at which
population adjusts to income is high relative to the speed of
technological change. However, over time the speed of adjustment

This content downloaded from
50.199.227.73 on Fri, 03 Oct 2025 22:38:09 UTC
All use subject to https://about.jstor.org/terms



694 QUARTERLY JOURNAL OF ECONOMICS

n(y)

y* y

<t

FiGure IT
Population Growth Versus Income

of population to income, which is a constant, declines relative to the
rate of technological change, which is constantly increasing.” The
single differential equation approximation therefore breaks down
at high enough levels of population, and it is necessary to examine
the full two-differential equation model. This model cannot be
solved analytically, but a phase diagram analysis demonstrates
that per capita income increases over time, and that eventually this
causes growth rates of population to fall.

Before proceeding to the phase diagram analysis, it is worth
discussing the intuition for why income must increase over time in
the case of the simple research equation of Section I, in which ¢
and ¥ both equal one. Recall that per capita income could be stable
only if the growth rate of population equaled 1/(1 — a) times the
growth rate of technology. Given a population p(0) at time 0, this
implies that income could be stable only if p/p = gp(0)/(1 — ). As
illustrated in Figure III, to generate population growth at this rate
according to the n(y) function, income would have to equal y(0). If
income were less than y(0), population growth would lag behind
technological change, causing per capita income to grow. Con-
versely, if income were greater than y(0), population growth would

7. 1implicitly assume that g > 0. In the absence of technological change, that
is, if g = 0, the model reduces to a purely Malthusian system, and produces behavior
similar to the logistic curve biologists use to describe animal populations facing fixed
resources.
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outstrip technological change, causing per capita income to fall.
Now consider the situation at some future time, with population
p(1). Income could now be constant only if p/p = gp(1)/(1 ~ o). But
to generate population growth at this rate, income would have to be
y(1). Hence there can be no steady state level of income. Income
gradually increases over time with the rate of technological change,
which itself increases with population. Once p is large enough that
gp/(1 — o) > n(y*), population growth cannot keep up with
technological change, the growth rate of per capita income in-
creases, and population growth declines.

The argument above is heuristic and limited tothe ¢ = 1, {y =
1 case, but a phase diagram analysis shows that under the general
research production function there will be a period of increasing
income and population growth rates, and that eventually income
will reach y*, causing population growth rates to fall. Figure IV
shows the phase diagram in population-income space, with one
possible configuration of the y = 0 locus.® The p = 0 locus is the
horizontal line along which y = ¥. As the arrows indicate, popula-
tion increases for income greater than ¥, and decreases for income
less than 3.9 The y = 0 locus is given by taking logarithms of the

a18" I thank Elhanan Helpman for his great assistance with this phase diagram
analysis.
9. If lim, ., n(y) < O, then there will be another p = 0 line at high income.
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equation y = Ap*~1, and differentiating with respect to time:

4 .
11) Y 2L @-1nE.
p

y A

Income is constant when the growth rate of technology equals
(1 — o) times the growth rate of population. Substituting for each
of these growth rates, the y = 0locus is

(12) yly = gp¥A* 1 + (a — Dn(y) =0,
and since A = yp!~¢, this can be rewritten as
(13) yly = gp¥~1-dU-ayé=1 4 (o — Dn(y) = 0.

As noted earlier, I assume that ¢ < 1andthat ¥ — (1 — ¢)(1 — ) >
0, which is a weak condition since « is close to one.

To find the shape of the y = 0 locus, note that it must contain
the point p = 0, y = ¥. Since y/y increases in p, but can either
increase or decrease in y, there can only be one level of p on they =
0 locus corresponding to a given level of y, but there may be
multiple levels of y on the locus corresponding to a given level of p.
The y = 0 locus must lie above the y = ¥ line for all p > 0, because
on that line technological change is positive and population growth
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is zero, so income is increasing. To the right of the y = 0 locus, the
growth rate of technology is high relative to the growth rate of
population, soy is positive. Correspondingly, to the left of they = 0
locus, y is negative.

No matter where the economy starts, it winds up in region B.
If it starts in region A, with high income relative to population,
population increases quickly relative to technology. Per capita
income therefore falls until the y = 0 locus is crossed and the
trajectory enters region B. If the economy starts in region C, below
the p = 0 locus, with low income relative to population, population
declines, and per capita income rises until the trajectory crosses the
p = 0locus and enters region B. (It is impossible for any trajectory
to cross the axis representing zero population, since the slope of a
trajectory is

dy y y[gpw~(1—-¢)(1~a)y¢—1 -1 - a)n(y)]
(14) — == .

dp p pn(y)
Hence for y < y*, as p approaches zero, the trajectory becomes
vertical, crosses the p = 0 axis, and enters region B.)

Once the trajectory is in region B, it remains there, with
population and income both increasing indefinitely. Income must
eventually reach y*, the level above which population growth slows.
To see why, note that since y > 0, if ¥ is not asymptotically
constant, it must eventually attain a level greater than y*. On the
other hand, y cannot asymptote to a constant level which induces
positive population growth, since this would lead to a positive
steady state growth rate of technology and income, contradicting
the original assumption of asymptotically constant income. Hence
if per capita income asymptotes to a constant, it must be to a level
that generates zero population growth, and is therefore greater
than y*.

As income rises above y*, population growth rates decline. If
¢ = 1, so that the level of technology enters the research
production function linearly, growth rates of technology continue
to increase because population continues to increase. If ¢ < 1, so
that the level of technology enters the research production func-
tion less than linearly, growth rates of technology are likely to
continue to increase for some period after y = y*, because of the
delayed effects of the prior increases in population growth rates.
The growth rate of A depends on the initial values of A and y and on
a weighted sum of past population growth rates, and as y increases
above y*, this sum is increasing. Decreasing growth rates of
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population and increasing growth rates of technology lead to an
increase in the growth rate of income per capita.

The asymptotic behavior of population depends on ¢ and on
lim, .. n(y). If lim,_,. n(y) < 0, then population asymptotically
approaches zero for any ¢. If & = 1 and if n(y) goes to zero
sufficiently quickly as income increases, population is asymptoti-
cally constant. Since the growth rate of technology is proportional
to the level of population, the growth rate of technology also
asymptotes to a constant. On the other hand, if ¢ = 1 and lim,_,,,
n(y) > 0, then both population and the growth rate of income
increase without bound.

If & < 1, as in Jones’s research equation, the steady state
growth rate of technology is ¥n/(1 — ¢), given constant population
growth at rate n. Since y = Ap*~1, the steady state growth rate of
per capita income will be

(15) Y [ + (o - 1)] n.

K4

y [1-¢

In summary, if population adjusts to income at finite speed,
then income will gradually rise over time as the growth rate of
technology increases. If, in addition, population growth declines
with income at high levels of income, there will eventually be a
demographic transition, and, for plausible parameter values, steady
state growth rates of population, technology, and income. A
generalized version of the model is thus at least qualitatively
consistent with the recent, as well as long-run, history of population.

IV. EMPIRICAL TESTS

This section tests the model with both time-series and cross-
section population data. The first subsection tests the model’s
prediction that population growth rates will be roughly propor-
tional to population levels over most of history, using an approach
similar to that of Von Foerster, Mora, and Amiot [1960]. They do
not build an explicit economic model (they were electrical engi-
neers, not economists), but simply posit an equation in which
population growth increases with population, show that it de-
scribes the data well, extrapolate it into the future, and conclude,
presumably in jest, that world population will become infinite on
Friday, the thirteenth of November, 2026. As noted in the previous
section, the generalized model predicts that population growth
rates will eventually decline—due not to overpopulation and
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environmental collapse, but to increased income and declining
fertility. The second subsection shows that among societies with-
out technological contact, those with greater land area, and hence
greater initial population, had faster technological change, as the
model predicts.

A. Testing the Model with Population Data

The single differential equation approximation of the full
model in Section I predicts that for most of history a regression of
population growth on population will generate an intercept of zero
and a coefficient on population of g/(1 — a). More generally, under
the Jones research production function, the growth rate of popula-
tion will be proportional to the level of population raised to the
power ¥ — (1 — o)(1 — &).

In contrast, under the null hypothesis that population is
limited by technological change that is independent of population,
there would be no correlation between population levels and
subsequent growth rates, so the coefficient on population would be
zero, and the intercept would be positive. This section tests the
model using the data on world population in Table I. Decennial
estimates from 1920 on were compiled primarily from United
Nations sources. The figures from 10,000 B.Cc. to 1900 are from
McEvedy and Jones [1978]. Their estimates of population after 200
B.C. were obtained by aggregating population estimates for individ-
ual geographic regions taken from other authors. These in turn are
based primarily on historical sources, such as Roman and Chinese
censuses. In contrast, estimates of population prior to 200 B.C., are
based on archaeological and anthropological evidence. Population
figures before 10,000 B.C. are from Deevey [1960].19

Clearly, the population estimates are subject to measurement
error, but i.i.d. measurement error or other unmodeled i.i.d. shocks
will not only make it harder to pick up any relationship between
population growth and levels, but will actually bias the results
against the integrated model. This is because undermeasurement
of population in period ¢ will cause measured growth from period ¢
to period ¢ + 1 to be greater than actual growth, so that it will
appear that low levels of population cause high growth rates.

A more serious problem would be systematic bias due to an
implicit model in the minds of those who constructed the data.

10. The main data set starts with homo erectus, one million years ago, since he
invented tools, and therefore should be subject to the model.
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TABLE II
PoPULATION GROWTH AS A FuncTiON OF POPULATION?

Dependent variable: GRPOP (standard errors in parentheses)

@D 2 (6)) 4) (5)

POP 0.524 0.537 0.504 0.548 1.11
(0.0258) (0.0334) (0.0367) (0.0377) (0.155)

CONS -2.26 E-3 -0.0323 3.79 E-4 -0.0571 -0.190
(0.0355) (0.0538) (0.00115) (0.0252) (0.0600)

Sample Full sample After —~200 Fullsample After —200 Evenly

Spaced

Weight unweighted unweighted RTGAP RTGAP unweighted

n 37 27 37 27 11

R2 0.92 0.91 0.62 0.79 0.850

DW 1.10 1.14 0.84 1.52 2.42

a. Population is in billions, and growth rates are in per in this and subsequent tables.

However, to the extent that McEvedy and Jones’s discussion
reveals any implicit model, it is not one similar to that of this paper,
but a Malthusian model in which population increases after major
exogenous technological changes, such as the agricultural revolu-
tion, and then levels off again until the next round of inventions. If
McEvedy and Jones fit any data points by exponential interpola-
tion, that would also work against the integrated model, and in
favor of the null hypothesis of constant exponential growth.

The results reported in Table II strongly reject the null
hypothesis that the coefficient on population is zero.!! Moreover, in
most specifications the intercept is insignificantly different from
zero, providing additional evidence for the model. To be sure that
the early data points do not drive the regressions, Table II also
reports results for the period after 200 B.C.

Under the model, the residuals should be stationary, and
indeed it is possible to reject the possibility of a unit root in the
residuals. An Engle-Granger test gives a Dickey-Fuller ¢-statistic of

11. Appropriate critical values for one-sided tests of the null against the
alternative that the coefficient is greater than zero are given by the upper tail of the
Dickey-Fuller distribution. Since these critical values are extremely low [Fuller,
1976, p. 3731, the null is even more strongly rejected than implied by the already
high ¢-statistics. Under the model, in which the coefficient on population is greater
than zero, the regression standard errors are sensitive to the distribution of the
underlying errors, but if these are normal, the usual ¢-statistic can be used to
construct confidence intervals [Anderson, 1959]. I thank Jushan Bai, Andrew
Bernard, and Lars Hansen for discussions on this issue.
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TABLE III
TESTS FOR HETEROSKEDASTICITY

Dependent variable: squared residuals
(standard errors in parentheses)

1) 2) 3) 4)
Weighted Weighted
regression regression

OLS residuals  OLS residuals residuals residuals

CONSTANT 2.00 E-05 1.72 E-05 -6.94E-04 -7.51E-04
(0.011) (0.012) (0.012) (0.012)

1/Period length 1.02 1.02 1.07 1.07
(0.248) (0.256) (0.256) (0.264)

YEAR -4.89 E-11 -9.98 E-10

(5.58 E-8) (5.76 E-8)

n 37 37 37 37

R2 0.32 0.32 0.33 0.33

DW 1.74 1.74 1.70 1.70

—4.25, compared with a 1 percent MacKinnon critical value of only
4.23.

Given the uneven period lengths, it is necessary to correct for
heteroskedasticity. In theory, the variance of average growth
should be approximately proportional to the reciprocal of the
period length.!? Table III reports tests for heteroskedasticity,
which indicate that the squared residuals are indeed roughly
proportional to the reciprocal of the period length. The variable
YEAR is insignificant in explaining the squared residuals, so there
is little evidence that measurement error is considerably more
severe in the early periods. While the proportional error in the
early estimates of population and population growth is no doubt
large, there can be no doubt that the magnitudes were tiny. The
absolute error in the estimate of the population growth rate over
the period 300,000-25,000 B.C. is thus probably smaller than that
over the period 1600-1650, and it is the absolute, rather than the
proportional error which determines the standard error of the
regression. Obviously, this weighting is not perfect, but it seems a
better option than putting equal weight on all periods. As a final

12. This would be true under the null hypothesis with i.i.d. shocks, but it only
holds approximately under the model, since a shock one period affects growth the
next.
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TABLE IV
POPULATION GROWTH AS A FUNCTION OF POPULATION: OTHER DATA SETS

Dependent variable: GRPOP (standard errors in parentheses)

Durand Deevey Clark
POP 0.816 0.522 0.497
(0.0617) (0.0295) (0.0580)
CONSTANT —-0.194 0.0170 —0.0599
(0.054) (0.0193) (0.0698)
n 5 10 18
R2 0.98 0.98 0.82
DW 3.28 2.30 2.07

check, Table II reports a regression excluding the data at uneven
intervals, leaving ten 200-year periods starting at 200 B.C. and one
190-year period from 1800 to 1990.13

Results are similar using other data sets. Deevey [1960], Clark
[1977], and Durand [1977] have all published estimates of world
population over long historical periods, which are replicated in the
Appendix. I use McEvedy and Jones as the principal source since
their work is most recent, they have the most data points, and their
data points are at regular intervals. However, as Table IV shows,
population levels are a significant determinant of growth rates in
all three of the other data sets. While the discrepancies between the
various estimates indicate the magnitude of measurement error,
the results reported in Table IV suggest that the conclusion that
population growth increases with population is robust to this
measurement error.

This paper uses world population data, since technologies such
as the use of fire, the making of iron tools, and the domestication of
the dog could diffuse over the long time periods analyzed in this
paper. However, McEvedy and Jones also provide regional data,

13. Note the higher coefficient on population in this regression. This is to be
expected because the model predicts that the growth rate will increase during the
course of the period, and with longer periods, the growth rate increases by more over
the period. If population at the end of the period is double what it was at the
beginning, the growth rate will be twice as high by then. While the model predicts
the instantaneous growth rate of population, the population estimates are at
discrete intervals. A previous version of the paper, available from the author,
derives predicted population growth over discrete, uneven intervals under a
deterministic model. It tests these predictions nonlinearly, and shows that the
results are similar to those obtained under OLS. Further complications would arise
under an explicitly stochastic model, because the variance of the error term would
affect the expected path of population.
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TABLE V
POPULATION GROWTH AS A FUNCTION OF POPULATION: EUROPE, CHINA, AND INDIA,
200 B.C. TO 1975

Dependent variable: GRPOP (standard errors in parentheses)

Europe China India
POPULATION 1.55 1.21 4.08
(0.315) (0.413) (0.480)
CONSTANT 0.0796 0.0207 -0.275
(0.0645) (0.108) (0.086)
n 22 22 22
R2 0.55 0.30 0.78
DW 1.55 1.73 0.63

and as Table V shows, regressions using the smaller geographic
regions of Europe, China, and India yield similar results.

The hypothesis of stability of the heteroskedasticity weighted
regression over time is consistent with the results of recursive
residuals, recursive coefficients, CUSUM, and CUSUM squared
tests, as shown in Figures V-VIII. The model predicts that
population growth will eventually level off and decline due to
increased income, and Figure I appears to suggest a break before
the last two observations, but a Chow test finds little evidence for a
break at 1970. (Periods are referred to by the date at the beginning
of the period.) It is possible to find evidence for a break in an
unweighted regression,!4 and despite the weakness of the economet-
ric evidence for a break, there is reason to think that the leveling off
of population growth in recent decades differs in nature, if not
magnitude, from the random variation the world has experienced
throughout history. Population growth in recent years has been
below the trend line not because of negative shocks from wars,
epidemics, or tyranny, but because of increased income.

The low Durbin-Watson statistics may be due to a break in 200
B.C. Given a break in 1970, an additional break at 200 B.C. raises the
Durbin-Watson statistic to 1.73 over the period —200 to 1960. A
Chow test on the heteroskedasticity weighted regression provides

14. The unweighted recursive residuals stay within or close to the two
standard error band until 1960, and then move outside the band, indicating a break,
and a Chow test indicates also indicates a break there. The CUSUM test is
consistent with parameter stability over the entire period. The CUSUM of squares
test moves outside the bands, but this may reflect its sensitivity to heterosk tic-
ity rather than shifts in the parameters.
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no evidence of a break, but a test on the unweighted regression
suggests a higher intercept before 200 B.c. Perhaps this could be
attributed to unmodeled population growth in early history due to the
settlement of new land!® and to biological evolution. Chow tests run
without a preselected break point will be biased toward rejecting
stability, so it is also possible that the apparent break is due to chance.

A Chow test for a break at the industrial revolution in 1800
with the full sample does not reject stability, but if the sample is cut
in 1960, it is possible to find a break in 1800. It seems plausible that
there was an increase in research productivity due either to
socioeconomic factors that increased g, research productivity per
capita, or to technological factors that led a group of related
inventions to be discovered together, creating a region of the
research function with high ¢.

If the regression is not corrected for heteroskedasticity, it is
possible to find periods in which the significant positive relation-
ship between the level of population and its growth rate breaks
down, but I do not think that this is too serious a problem with the
model. If one considers unweighted regressions over successively
lengthier samples, and uses standard ¢-statistics for a one-sided
test, population becomes significant by 4000 B.C. and remains so
until the Roman empire begins to decline in the second century.
Population is significant again in 1000 and 1100. It becomes
insignificant for three periods due to the negative outliers of the
Black Death, which reduced Europe’s population by a third, and
the Mongol conquests, which reduced China’s population from 115
million in 1200 to 86 million in 1300. Population becomes signifi-
cant again before the impact of the industrial revolution on world
population. It is significant at all times after 1500, except for the
period 1600-1650 with the simultaneous disasters of the Thirty
Years’ War, which devastated Central Europe, and the fall of the
Ming dynasty, which reduced China’s population from 160 million
in 1600 to 140 million in 1650. If one uses the theoretically more
appropriate upper-tail Dickey-Fuller critical values, population is
significant through all these negative shocks.1€

Given the noisiness of the data and the small number of data
points, it is unsurprising that by searching over various subsam-
ples it is possible to find periods over which the coefficient is not

15. I am grateful to Abhijit Banerjee and Andrew Newman for this suggestion.

16. This is based on the critical values in Fuller [1976] for a sample size of 25.
For more precise estimates of the critical values for smaller samples, Monte Carlo
estimates would be necessary.
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TABLE VI

ESTIMATESOF ¥V -~ (1 —a) (1 — &)

707

GRPOP = CONST + K«POPY-(1-«)(1-4)

(standard errors in parentheses)

1)

2 3

4)

CONST 4.51 E-4 6.25 E-4 -0.038 -0.036
(0.00117) (0.0011) (0.031) (0.052)

K 0.493 0.507 1.18 E-9 2.13 E-6
(4.45 E-2) (4.74 E-2) (2.13 E-9) (3.12 E-6)

V-1-01-4¢) 1.03 1.22 1.43 0.907
(0.081) (0.112) (0.122) (0.0965)

Weighting RTGAP RTGAP unweighted unweighted

Sample -1,000,000 -1,000,000to0 -1,000,000to -1,000,000 to

to 1980 1960 1980 1960

DW 0.859 0.893 1.083 1.537

R2 0.622 0.578 0.924 0.949

n 37 35 37 35

significant in some specifications. Since this regression is not
corrected for heteroskedasticity, it is driven by fluctuations at the
end of the sample. With a heteroskedasticity weighted regression,
population is significant at all times after 4000 B.C. even using
standard ¢-statistics. When one looks at long periods in which
fluctuations average out, there is clear evidence of a secular
long-run trend. Population growth was less than 0.00073 percent a
year from 200,000 B.c.17 to 10,000 B.C.; 0.037 percent a year from
10,000 B.C. to the year 1; and 0.073 percent a year from the year 1
to 1600. So I do not think that the positive trend holds only after
the industrial revolution. As noted earlier, the recursive residual,
CUSUM, and CUSUM squared tests are consistent with stability of
the relationship over the entire period. Even using standard #-
statistics, population is significant in India by 1600 and in China by
1750, before the impact of the industrial revolution on their
populations. Finally, the cross-section evidence in subsection IV.B
on regions that had no technological contact before 1500 indicates
that the model applied before that date.

Table VI reports results from using nonlinear least squares to
estimate the model with the more general Jones research equation,

17. Starting the sample with homo sapiens, 200,000 years ago, works a%amst
the model by producing a more rapid early growth rate. I use Deevey’s population
estimate for 300,000 years ago, which also works against the model.
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so that population growth is proportional to p¥~-(1-2{1-#_ Since the
last two observations may reflect the demographic transition, it
also reports regressions using data up to 1960. While the likelihood
function is fairly flat, so these estimates should be taken with a
grain of salt, they suggest that ¥ — (1 — a)(1 — &) is greater than,
or approximately equal to, one. Since ¢, the degree to which
research output increases in the level of technology, cannot be
greater than one, V is greater than, or approximately equal to, one.

High R?s cannot be obtained with any increasing right-hand
side variable, since population and its growth rate are not merely
increasing variables, but variables that increase at an ever increas-
ing rate. The year, for example, is almost insignificant as a
right-hand side variable. Exp (year/k) can drive out population for
some values of the constant &, but few obvious economic variables
grew exponentially during this period. It is unlikely that per capita
income would have much explanatory power, since its growth is
unlikely to have matched that of population, which, for example,
grew thirty-fivefold from 10,000 B.C. to 200 B.C.

Perhaps it would be possible to explain the data through some
other variable, or through a series of particular historical events
that caused the growth rate of technology to increase at some
periods and decrease at others, without including an effect of
population on technology. However, given that a simple model,
based on the economic theory of technology as a nonrival good, is
consistent with the data over such a long period, it is not clear why one
would want to abandon it for an alternative explanation of the data.

B. Cross-Section Evidence from Technologically Separate Regions

The model implies that if there were no technological contact
between regions that started with similar technology and with
population proportional to their land area, those regions with
greater land area, and hence larger initial populations, would
experience faster technological change. Hence they would attain
higher levels of technology and greater population densities. To see
why, integrate the population determination equation, dp/p? = g
dt/(1 — a), to obtain population at time ¢ in region i, as a function
of initial population, p;,:18

1 l-«a

(16) pi®) = (1/py) — (gt/(1 — @) b< 8Pio

18. Note that this would generate infinite population in finite time if it were
not for the demographic transition discussed earlier. I thank Serge Marquie and
Alan Taylor for assistance with these calculations.
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POPULATION GROWTH AND TECHNOLOGY 709

(By Jensen’s inequality, the expected value of p(¢) for any value of
g/(1 — a) would be larger in a model with shocks, since p(¢) is a
convex function of p(0).) Dividing by land area, T'; gives

1 ; l—a
1/dy) — @T/1 — ) < 2gT’

where d;, denotes the population density of region i at time ¢ and d,
denotes the initial common population density. It is straightfor-
ward to write an equivalent expression for A;, the level of
technology, as a function of land area, since d;; is proportional to
A}~ The model also predicts that the elasticity of density with
respect to land area will be (1 — a)dogtT;/(1 — a — dygtT;) and
thus will increase with land area, T,;. In contrast, under an
alternative model of exogenously increasing growth rates of technol-
ogy, independent of population, there would be no correlation
between land area and levels of technology and population density.

The melting of the polar ice caps at the end of the ice age,
around 10,000 B.c., and the consequent flooding of land bridges,
provide a natural experiment that nearly eliminated contact be-
tween the old world, the Americas, mainland Australia, Tasmania,
and Flinders Island.!® As the model predicts, in 1500, just after
Columbus’ voyage reestablished technological contact, the region
with the greatest land area, the Old World, had the highest
technological level. The Americas followed, with the agriculture,
cities, and elaborate calendars of the Aztec and Mayan civilizations.
Mainland Australia was third, with a population of hunters and
gatherers. Tasmania, an island slightly smaller than Ireland,
lacked even such mainland Australian technologies as the boomer-
ang, fire-making, the spear-thrower, polished stone tools, stone
tools with handles, and bone tools, such as needles [Diamond,
1993].20 Flinders Island, near Tasmania, has only about 680 square
kilometers of land, and according to radiocarbon evidence, its last
inhabitants died out about 4000 years after they were cut off by the
rising seas—suggesting possible technological regress.?! If techno-

(1 7) di,t =

19. Different land bridges were flooded at different dates. Flinders Island was
probably cut off only 8700 years ago.

20. Diamond [1993] explicitly attributes Tasmania’s low technological level to
its low population.

21. The Tasmanians’ technological stock actually depreciated: they lost the
ability to make bone tools, for example, which archaeological evidence shows they
once possessed. On the other hand, they probably invented a crude boat about 4000
years ago. Introducing depreciation of technology into the model could create zero
or negative technological change if population or income, and hence research
productivity, were low enough. This creates a richer model with multiple steady
states and paths to extinction. While these might be relevant for some particular
cases, such as Flinders Island, I believe they are of limited importance when looking
at the world as a whole.
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TABLE VII
POPULATION AND POPULATION DENSITY, C. 1500
Land area Population c. 1500
(million km?) (millions) Population/(km?)
Old World? 83.98 407 4.85
Americas® 38.43 14 0.36
Australia® 7.69 0.2 0.026
Tasmania 0.068 0.0012-0.005 0.018-0.074
Flinders Island 0.0068 0.0 0.0

a. Sub-Saharan Africa is included in the old world, since there was some contact across the Sahara.

b. There are a wide range of population estimates for the Americas and Australia at the time of European
arrival, and McEvedy and Jones’s are at the low end. However, higher estimates would not affect the rank
ordering.

c. Estimates for Tasmania are based on the Encyclopaedia Brittanica.

logical change were actually independent of initial population, the
chance that technology levels in the four inhabited regions would
be ranked in this same order as land area is only 1 in 24. If Flinders
Island is included, the chance drops to 1 in 120.

Although their isolation was never as complete as that of the
regions discussed above, ancient Britain and Japan also fit the
model. When the land bridge between ancient Britain and Europe
was cut off, around 5500 B.c., Britain fell technologically behind
Europe.?? Agriculture was introduced around 4000 B.C. by neolithic
immigrants from Europe and metallurgy was brought by immi-
grants from the low countries around 2300 B.c. Ancient Japan was
settled by paleolithic people from the mainland before its land
connections to Asia were cut off by rising seas. Although its
prehistory is murky, Japan’s paleolithic people seem to have been
very primitive: they lived in pits or caves rather than building even
primitive structures, and no bone or horn artifacts associated with
neolithic people in the rest of the world have been found in Japan.
Immigrants from Asia bearing culture from Korea and China later
brought more advanced technology to Japan.

Table VII shows that estimated population density in 1500
increases with land area, as the model predicts. Tasmania’s raw
population density appears similar to that of mainland Australia,
but its population per unit of quality adjusted land is probably
lower, since more than half of Australia is inhospitable desert,
receiving less than 30 centimeters of rainfall a year, while most of
Tasmania has relatively favorable conditions.

22. Information on ancient Britain and Japan is from Encyclopaedia Britan-
nica [1987].
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Using equation (17), it is possible to make quantitative
predictions of each region’s density in 1500, given some heroic
assumptions. Assuming that technological contact was cut off in
10,000 B.C., so ¢ = 11,500, that d,, initial density for all regions, was
equal to McEvedy and Jones’s estimated world population density
0f 0.030729 per square kilometer, and that the quality of land in all
four areas was the same, so T corresponds to the entries in Table
VII, then in order to generate a population density of 4.85 per
square kilometer in the Old World in 1500, g/(1 — «) would have to
equal 0.0335 per billion people, and this would have produced
population densities of 0.0308 per square kilometer in Tasmania,
0.0338 in mainland Australia, and 0.0564 in the Americas. The
model’s prediction that a given percentage discrepancy in land area
between two regions will have more of an effect on population
density at high levels of land area matches the data: mainland
Australia’s population density is of the same magnitude as Tasma-
nia’s despite having more than 100 times the land area, while the
old world, with eleven times Australia’s land area, has more than
150 times its density. Moreover, the model correctly predicts that
population densities in Tasmania and Australia would not increase
appreciably over the initial density, d,.22 However, the model
underpredicts population in the Americas relative to that in the
Old World, and it requires a higher level of g/(1 — a) than
suggested by the regressions of subsection IV.A. These discrepan-
cies may be due in part to underestimation of population in 10,000
B.C.; to inclusion of sub-Saharan Africa in the Old World, despite
the extremely limited technological contact across the Sahara; and
to differences in land quality or date of technological separation.24
However, they may also reflect problems with the simple d =1, § =
1, research equation and the model’s assumption of instantaneous

23. The calibration assumes that dy = 0.307, but since the actual population
density of Australia was less than this in 1500, it seems likely that Australia had a
lower initial density, perhaps due to lower land quality, or due to becoming
technologically separate earlier than 10,000 B.C.

24. If population in 10,000 B.c. were 10 million, as some have estimated, and if
sub-Saharan Africa were treated as a separate unit from the rest of the old world,
the predicted population density in the Americas in 1500 given that in the old world
would have been about 0.2 per square kilometer. America’s discovery of agriculture
may represent a group of related inventions with high ¢.

The lower value of g/(1 — ) suggested by the time series regressions is due in
part to the assumption that technology could diffuse across regions. If initial
population were 10 million and if the world were taken as a unit, the estimated value
of g/(1 — a) would be 0.00849. Moreover, since equation (17) does not allow for a
stochastic term, it will generate a higher estimate of g/(1 — a) than a time series
regression.
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technological diffusion within regions.?®> Given the strong assump-
tions required for calibration, the low quality of the data, and the
model’s sensitivity to initial conditions, it is surprising that so
crude a model matches the data this well.

In sum, regions with greater land area, and hence greater initial
population, attained higher technological levels and population densi-
ties, as the model predicts. While we cannot precisely determine the
nonlinear function relating initial population to final technological level
and population density, the data are difficult to reconcile with models in
which technological change is independent of population.

V. CONCLUSION: IMPLICATIONS FOR POLICY AND THEORY

Following Lee [1988], this paper constructs an integrated
model of population growth and technological change. It assumes
that each person’s chance of inventing something is independent of
population, so that total research output increases in proportion to
population. Over the historical period when population was limited
by the available technology, the model therefore predicts that the
growth rate of population will be approximately proportional to the
level of population. Per capita income gradually increases with the
growth rate of technology, and eventually this causes population
growth to slow. Empirical evidence supports the model: through
most of history the growth rate of world population has been
approximately proportional to the level of population. Moreover,
among societies with no opportunity for technological contact,
those with greater initial population attained higher technology
levels and population densities. These facts are difficult to reconcile
with prevailing growth models in which technological change is
independent of population.

The model of continuous acceleration of population and tech-
nology proposed here can be contrasted with models involving
discontinuous breaks, such as multiple equilibria models in which
the economy either stagnates or experiences steady state growth.
These models typically make few predictions about when the
economy will be in each equilibrium. Moreover, their focus on
technological stagnation as the alternative to steady state growth
reduces most of history to the category of stagnation, despite such
inventions as the wheel, Euclidean geometry, the plow, and the
compass. It is ironic that growth theorists are building models with

25. David Romer has pointed out that a model with ¢ > 1 and ¥ < 1 could
match the population of the Americas, although it would be inconsistent with data
from the modern period.
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sharp breaks at a time when most development economists reject
the notion of takeoff and many economic historians stress continu-
ity rather than a discontinuous industrial revolution.

Future research may seek to quantitatively model the demo-
graphic transition and to allow for slow diffusion of technology and
for stochastic shocks to population and technology. This paper has
abstracted from fluctuations in research productivity per capita, since it
focuses on extremely long periods over which they may average out.
However, the study of how economic and political institutions affect
research productivity remains critical for understanding time series
dynamics over shorter periods and cross-section differences between
countries, since in these contexts the variance of research productivity
per capita is often large relative to that of population.

Although the model is designed to reflect historical, rather
than current conditions, it is worth considering its implications for
the present, both for policy and for growth theory. If research
productivity per person depends on income, the short-run impact
of pro-natal policies, such as tax allowances for children, on the
speed of technological change is ambiguous. For example, child
subsidies that increase birth rates might lower research productiv-
ity per capita. However, in the long run this model implies that
faster population growth leads to faster technological change. For
¢ = 1, the growth rate of technology equals research productivity
per capita times population, and the one-time fall in research
productivity per capita caused by an increase in fertility will
eventually be outweighed by the cumulative effect of population
growth. For ¢ < 1, Jones shows that the asymptotic growth rate of
technology is proportional to the growth rate of population and is
independent of research productivity per capita. However, while
pro-natal policies may be growth-enhancing from the point of view
of the world as a whole, individual countries may wish to let their
citizens choose the privately optimal family size and to free ride off
technological innovations made in other countries. Moreover, the
model used in this paper does not allow for either exhaustible
natural resources or for an ultimate limit on the level of technol-
ogy, and in models incorporating these features, population growth
could reduce long-run income per capita. Thus, the model should
not be taken as a call for increased population. It does suggest,
however, that economists should conduct further research to
measure the growth and welfare effects of population growth under
nonrival technology, rather than simply following conventional wisdom
and concentrating on the negative effects of population growth.

The model’s implications for growth theory are clearer. Most
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models of endogenous technological change imply that all else
equal, higher population spurs technological change. This result, I
believe, is due not to any quirk of modeling, but to the fundamental
nonrivalry of technology as described by Romer. Perhaps it is
possible to argue that technological change is independent of
population, and to construct some other explanation of why the
growth rate of population has historically been proportional to its
level. Perhaps it is even possible to explain why among technologi-
cally separate regions, those with higher population have had
faster technological change. However, given that our theoretical
models of technological change predict that higher population leads
to faster technological change, what is noteworthy is not that other
models might be able to explain the data, but that an extremely stylized
model, based on theory, provides such a good description of the data
over such a long period. Endogenous growth theorists have dismissed
the population implications of their models as empirically untenable.
This paper suggests that we should take them seriously.

APPENDIX
A. POPULATION GROWTH: EUROPE, CHINA, AND INDIA

Europe Europe China China India India
population  growth  population growth population growth
Year  (millions) rate(%) (millions) rate(%) (millions) rate (%)

-200 26 0.0875 42 0.1157 31 0.0604
1 31 0.0751 53 0.0869 35 0.0795
200 36 -0.0748 63 —0.0864 41 0.0683
400 31 ~-0.0879 53 -0.0291 47 0.0601
600 26 0.0546 50 0.0000 53 0.0943
800 29 0.1081 50 0.1388 64 0.1053
1000 36 0.2007 66 0.4643 79 0.0494
1100 44 0.2763 105 0.0910 83 0.0355
1200 58 0.3090 115 —0.2906 86 0.0565
1300 79 -0.2751 86 ~-0.0599 91 0.0639
1400 60 0.3001 81 0.3060 97 0.0792
1500 81 0.2107 110 0.3747 105 0.2513
1600 100 0.0976 160 -0.2671 135 0.2107
1650 105 0.2671 140 0.2671 150 0.1906
1700 120 0.3083 160 0.6819 165 0.1177
1750 140 0.5026 225 0.7660 175 0.1645
1800 180 0.7735 330 0.5525 190 0.3821
1850 265 0.6914 435 —0.1883 230 0.4127
1875 315 0.8543 415 0.5401 255 0.5145
1900 390 0.7463 475 0.4382 290 0.5168
1925 470 0.3657 530 0.4290 330 1.1959
1950 515 0.8378 590 1.3892 445 2.2119
1975 635 — 835 — 775 —
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APPENDIX (CONTINUED)
B. DURAND DaAraA2

(Population figures are based on midpoints of Durand’s ranges)

Year Population (millions) Growth rate (%)
1 300 0.00328

1000 310 0.0996

1500 510 0.1648

1750 770 0.5201

1900 1680 1.1567

1975 4000 —

C. DEEVEY DATA

Year Population (millions) Growth rate (%)
-1,000,000 0.125 0.000297
-300,000 1 0.000439
—-25,000 3.34 0.0031
-8000 5.32 0.0697
—4000 86.5 0.0108
1 133 0.0835
1650 545 0.2895
1750 728 0.4375
1800 906 0.5750
1900 1610 0.7985
1950 2400 —

D. CLARK DaTa

Year Population (millions) Growth rate (%)
14 256 -0.00233
350 254 -0.0277
600 237 0.0482
800 261 0.0351
1000 280 0.1579
1200 384 -0.0112
1340 378 0.0762
1500 427 0.1538
1600 498 0.0710
1650 516 0.4338
1700 641 0.2628
1750 731 0.3936
1800 890 0.6282
1900 1668 0.8270
1920 1968 0.8612
1930 2145 0.8701
1940 2340 0.6574
1950 2499 1.6221
1962 3036 —

a. Population figures are based on midpoints of Durand’s ranges.

DEPARTMENT OF EcoNOMICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
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