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 OPTIMAL AUCTION DESIGN*t

 ROGER B. MYERSON

 Northwestern University

 This paper considers the problem faced by a seller who has a single object to sell to one of
 several possible buyers, when the seller has imperfect information about how much the buyers
 might be willing to pay for the object. The seller's problem is to design an auction game which
 has a Nash equilibrium giving him the highest possible expected utility. Optimal auctions are
 derived in this paper for a wide class of auction design problems.

 1. Introduction. Consider the problem faced by someone who has an object to
 sell, and who does not know how much his prospective buyers might be willing to pay
 for the object. This seller would like to find some auction procedure which can give
 him the highest expected revenue or utility among all the different kinds of auctions
 known (progressive auctions, Dutch auctions, sealed bid auctions, discriminatory
 auctions, etc.). In this paper, we will construct such optimal auctions for a wide class
 of sellers' auction design problems. Although these auctions generally sell the object at
 a discount below what the highest bidder is willing to pay, and sometimes they do not
 even sell to highest bidder, we shall prove that no other auction mechanism can give
 higher expected utility to the seller.

 To analyze the potential performance of different kinds of auctions, we follow
 Vickrey [11] and study the auctions as noncooperative games with imperfect informa-
 tion. (See Harsanyi [3] for more on this subject.) Noncooperative equilibria of specific
 auctions have been studied in several papers, such as Griesmer, Levitan, and Shubik
 [1], Ortega-Reichert [7], Wilson [12], [13]. Wilson [14] and Milgrom [5] have shown
 asymptotic optimality properties for sealed-bid auctions as the number of bidders goes
 to infinity. Harris and Raviv [2] have found optimal auctions for a class of symmetric
 two-bidder auction problems. Independent work on optimal auctions has also been
 done by Riley and Samuelson [8] and Maskin and Riley [4]. A general bibliography of
 the literature on competitive bidding has been collected by Rothkopf and Stark [10].

 The general plan of this paper is as follows. ?2 presents the basic assumptions and
 notation needed to describe the class of auction design problems which we will study.
 In ?3, we characterize the set of feasible auction mechanisms and show how to
 formulate the auction design problem as a mathematical optimization problem. Two
 lemmas, needed to analyze and solve the auction design problem, are presented in ?4.
 ?5 describes a class of optimal auctions for auction design problems satisfying a
 regulatory condition. This solution is then extended to the general case in ?6. In ?7, an
 example is presented to show the kinds of counter-intuitive auctions which may be
 optimal when bidders' value estimates are not stochastically independent. A few
 concluding comments about implementation are put forth in ?8.

 * Received January 29, 1979; revised October 15, 1979.
 AMS 1980 subject classification. Primary 90D45. Secondary 90C10.
 IA OR 1973 subject classification. Main: Games.
 OR/MS Index 1978 subject classification. Primary: 236 games/group decisions/noncooperative.
 Key words. Auctions, expected revenue, direct revelation mechanisms.
 tThe author gratefully acknowledges helpful conversations with Paul Milgrom, Michael Rothkopf, and
 especially Robert Wilson, who suggested this problem. This paper was written while the author was a visitor
 at the Zentrum fur interdisziplinare Forschung, Bielefeld, Germany.
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 OPTIMAL AUCTION DESIGN

 2. Basic definitions and assumptions. To begin, we must develop our basic defini-
 tions and assumptions, to describe the class of auction design problems which this
 paper will consider. We assume that there is one seller who has a single object to sell.
 He faces n bidders, or potential buyers, numbered 1,2, . . ., n. We let N represent the
 set of bidders, so that

 N= {1,..., n. (2.1)

 We will use i and j to represent typical bidders in N.
 The seller's problem derives from the fact that he does not know how much the

 various bidders are willing to pay for the object. That is, for each bidder i, there is
 some quantity ti which is i's value estimate for the object, and which represents the
 maximum amount which i would be willing to pay for the object given his current
 information about it.

 We shall assume that the seller's uncertainty about the value estimate of bidder i can
 be described by a continuous probability distribution over a finite interval. Specifi-
 cally, we let ai represent the lowest possible value which i might assign to the object;
 we let bi represent the highest possible value which i might assign to the object; and we

 let f :[ai,bi] - R be the probability density function for i's value estimate ti. We
 assume that: - oo < ai < bi < + oo; fi(ti) > 0, Vti E [ai, bi]; and fi(.) is a continuous
 function on [ai, bj. Fi: [ai, bi] - [0, 1] will denote the cumulative distribution function
 corresponding to the density fi(-), so that

 Fi(ti) = ?fi(tsi) ds. (2.2)

 Thus Fi(t1) is the seller's assessment of the probability that bidder i has a value
 estimate of ti or less.

 We will let T denote the set of all possible combinations of bidders' value estimates;
 that is,

 T=[al,bl] X ... X[an,bn]. (2.3)
 For any bidder i, we let T_i denote the set of all possible combinations of value
 estimates which might be held by bidders other than i, so that

 T_i= X aj, bj[]. (2.4)
 j=i

 Until ?7, we will assume that the value estimates of the n bidders are stochastically
 independent random variables. Thus, the joint density function on T for the vector
 t = (tl, . . . , t) of individual value estimates is

 f(t) = I ( fj(t/) (2.5)
 jEN

 Of course, bidder i considers his own value estimate to be a known quantity, not a
 random variable. However, we assume that bidder i assesses the probability distribu-
 tions for the other bidders' value estimates in the same ways as the seller does. That is,

 both the seller and bidder i assess the joint density function on T_i for the vector
 t-i = (tl, ., ti_l, ti+, ..., tn) of values for all bidders other than i to be

 f-i(t-i)= "II fj(t). (2.6)
 jEN

 The seller's personal value estimate for the object, if he were to keep it and not sell it
 to any of the n bidders, will be denoted by t0. We assume that the seller has no private

 information about the object, so that to is known to all the bidders.
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 ROGER B. MYERSON

 There are two general reasons why one bidder's value estimates may be unknown to
 the seller and the other bidders. First, the bidder's personal preferences might be
 unknown to the other agents (for example, if the object is a painting, the others might
 not know how much he really enjoys looking at the painting). Second, the bidder
 might have some special information about the intrinsic quality of the object (he might
 know if the painting is an old master or a copy). We may refer to these two factors as
 preference uncertainty and quality uncertainty.' This distinction is very important. If
 there are only preference uncertainties, then informing bidder i about bidderj's value
 estimate should not cause i to revise his valuation. (This does not mean that i might

 not revise his bidding strategy in an auction if he knewj's value estimate; this means
 only that i's honest preferences for having money versus having the object should not
 change.) However, if there are quality uncertainties, then bidder i might tend to revise
 his valuation of the object after learning about other bidders' value estimates. That is,

 if i learned that tj was very low, suggesting thatj had received discouraging informa-
 tion about the quality of the object, then i might honestly revise downward his
 assessment of how much he should be willing to pay for the object.

 In much of the literature on auctions (see [11], for example), only the special case of
 pure preference uncertainty is considered. In this paper, we shall consider a more
 general class of problems, allowing for certain forms of quality uncertain as well.
 Specifically, we shall assume that there exist n revision effect functions ej: [ai, bi] -> R
 such that, if another bidder i learned that tj wasj's value estimate for the object, then i
 would revise his own valuation by e.(tj). Thus, if bidder i learned that t = (t,, .. ., tn)
 was the vector of value estimates initially held by the n bidders, then i would revise his
 own valuation of the object to

 vi(t) = ti + 2 ej(tj). (2.7)
 jEN
 jii

 Similarly, we shall assume that the seller would reassess his personal valuation of the
 object to

 vo(t) = to+ 2 ey(tj) (2.8)
 jEN

 if he learned that t was the vector of value estimates initially held by the bidders. In
 the case of pure preference uncertainty, we would simply have ej(t) = 0.

 (To justify our interpretation of ti as i's initial estimate of the value of the object, we
 should assume that these revision effects have expected-value zero, so that

 ej ( t)f( t) dt = 0. (2.9)
 aj

 However, this assumption is not actually necessary for any of the results in this paper;
 without it, only the interpretation of the ti would change.)

 3. Feasible auction mechanisms. Given the density functions f and the revision
 effect functions ei and vi as above, the seller's problem is to select an auction
 mechanism to maximize his own expected utility. We must now develop the notation
 to describe the auction mechanisms which he might select. To begin, we shall restrict
 our attention to a special class of auction mechanisms: the direct revelation mecha-
 nisms.

 In a direct revelation mechanism, the bidders simultaneously and confidentially
 announce their value estimates to the seller; and the seller then determines who gets

 'I am indebted to Paul Milgrom for pointing out this distinction.
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 OPTIMAL AUCTION DESIGN

 the object and how much each bidder must pay, as some functions of the vector of
 announced value estimates t = (t, . . ., tn). Thus, a direct revelation mechanism is

 described by a pair of outcome functions (p,x) (of the form p: T-> R" and x: T Rn)
 such that, if t is the vector of announced value estimates then pi(t) is the probability
 that i gets the object and xi(t) is the expected amount of money which bidder i must
 pay to the seller. (Notice that we allow for the possibility that a bidder might have to
 pay something even if he does not get the object.)

 We shall assume throughout this paper that the seller and the bidders are risk
 neutral and have additively separable utility functions for money and the object being
 sold. Thus, if bidder i knows that his value estimate is ti, then his expected utility from
 an auction mechanism described by (p, x) is

 Ui(p, x,ti) = (vi(t)pi(t) - xi(t))f_i(t_i)dt_i (3.1)

 where dt_i = dt . .. dti_ dti,+ . . . dt,.
 Similarly, the expected utility for the seller from this auction mechanism is

 Uo(p,x) =fT(vo(t)(1 - 2 pj(t)) + 2 xj(t))f(t)dt (3.2)

 where dt = dtI ... dt,.
 Not every pair of functions (p, x) represents a feasible auction mechanism, however.

 There are three types of constraints which must be imposed on (p, x).
 First, since there is only one object to be allocated, the function p must satisfy the

 following probability conditions:

 2 pj(t) < 1 and pi(t) > 0, VieN, Vte T. (3.3)
 jeN

 Second, we assume that the seller cannot force a bidder to participate in an auction
 which offers him less expected utility then he could get on his own. If he did not
 participate in the auction, the bidder could not get the object, but also would not pay
 any money, so his utility payoff would be zero. Thus, to guarantee that the bidders will

 participate in the auction, the following individual-rationality conditions must be
 satisfied:

 Ui(p, x, ti) > O, Vi E N, V, E[ai, bi]. (3.4)
 Third, we assume that the seller could not prevent any bidder from lying about his

 value estimate, if the bidder expected to gain from lying. Thus the revelation mecha-
 nism can be implemented only if no bidder ever expects to gain from lying. That is,
 honest responses must form a Nash equilibrium in the auction game. If bidder i
 claimed that si was his value estimate when ti was his true value estimate, then his
 expected utility would be

 (vi(t)pi(t-i,si) - xi(t-isi))f-i(t-i)dt-i

 where (t _,si) = (tl, . . . , ti, s,+, .I . , t). Thus, to guarantee that no bidder has
 any incentive to lie about his value estimate, the following incentive-compatibility
 conditions must be satisfied:

 Ui(p,x,ti) >f (vi(t)pi(t_i,si) - xi(t_i,si))f_i(t_i)dt_i (3.5)

 61
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 ROGER B. MYERSON

 We say that (p,x) is feasible (or that (p,x) represents a feasible auction mechanism)
 iff (3.3), (3.4), and (3.5) are all satisfied. That is, if the seller plans to allocate the object

 according to p and to demand monetary payments from bidders according to x, then
 the scheme can be implemented, with all bidders willing to participate honestly, if and
 only if (3.3)-(3.5) are satisfied.

 Thus far, we have only considered direct revelation mechanisms, in which the
 bidders are supposed to honestly reveal their value estimates. However, the seller could
 design other kinds of auction games. In a general auction game, each bidder has some
 set of strategy options ei; and there are outcome functions

 p : 1I X * * X " ->rn and x .1 ? X n--" Rn,

 which described how the allocation of the object and the bidders' fees depend on the
 bidders' strategies. (That is, if 0 = (01, . . . , 9n) were the vector of strategies used by the
 bidder in the auction game, then Ai() would be the probability of i getting the object
 and xi(0) would be the expected payment from i to the seller.)

 An auction mechanism is any such auction game together with a description of the
 strategic plans which the bidders are expected to use in playing the game. Formally, a
 strategic plan can be represented by a function i: [ai, bi] -> i, such that Oi(ti) is the
 strategy which i is expected to use in the auction game if his value estimate is ti. In this
 general notation, our direct revelation mechanisms are simply those auction mecha-
 nisms in which 3, = [ai, bi] and M(ti) _ ti.

 In this general framework, a feasible auction mechanism must satisfy constraints
 which generalize (3.3)-(3.5). Since there is only one object, the probabilities p,(O) must
 be nonnegative and sum to one or less, for any 0. The auction mechanism must offer
 nonnegative expected utility to each bidder, given any possible value estimate, or else
 he would not participate in the auction. The strategic plans must form a Nash
 equilibrium in the auction game, or else some bidder would revise his plans.

 It might seem that problem of optimal auction design must be quite unmanageable,
 because there is no bound on the size or complexity of the strategy spaces Oi which the
 seller may use in constructing the auction game. The basic insight which enables us to
 solve auction design problems is that there is really no loss of generality in considering
 only direct revelation mechanisms. This follows from the following fact.

 LEMMA 1. (THE REVELATION PRINCIPLE.) Given any feasible auction mechanism, there
 exists an equivalent feasible direct revelation mechanism which gives to the seller and all
 bidders the same expected utilities as in the given mechanism.

 This revelation principle has been proven in the more general context of Bayesian
 collective choice problems, as Theorem 2 in [6]. To see why it is true, suppose that we
 are given a feasible auction mechanism with arbitrary strategy spaces Oi, with outcome

 functions p and x, and with strategic plans Hi, as above. Then consider the direct
 revelation mechanism represented by the functions p: T- Rn and x: T- R" such that

 p(t,..., tn) =A(,(t,),..., n(t,))
 x(tl,..., tn) = x(01(t,), ..., ,(t).

 That is, in the direct revelation mechanism (p,x), the seller first asks each bidder to
 announce his type, and then computes the strategy which the bidder would have used
 according to the strategic plans in the given auction mechanism, and finally imple-
 ments the outcomes prescribed in the given auction game for these strategies. Thus, the
 direct revelation mechanism (p,x) always yields the same outcomes as the given
 auction mechanism, so all agents get the same expected utilities in both mechanisms.
 And (p,x) must satisfy the incentive-compatibility constraints (3.5), because the
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 OPTIMAL AUCTION DESIGN

 strategic plans formed an equilibrium in the given feasible mechanism. (If any bidder
 could gain by lying to the seller in the revelation game, then he could have gained by
 "lying to himself" or revising his strategic plan in the given mechanism.) Thus, (p, x) is
 feasible.

 Using the revelation principle, we may assume, without loss of generality, that the
 seller only considers auction mechanisms in the class of feasible direct revelation
 mechanisms. That is, we may henceforth identify the set of feasible auction mecha-
 nisms with the set of all outcome functions (p,x) which satisfy the constraints (3.3)
 through (3.5). The seller's auction design problem is to choose these functions p: T
 -> R" and x: T--> R so as to maximize Uo(p,x) subject to (3.3)-(3.5).
 Notice that we have not used (2.7) or (2.8) anywhere in this section. Thus (3.3)-(3.5)

 characterize the set of all feasible auction mechanisms even when the bidders compute
 their revised valuations vi(t) using functions vi: T-- R, which are not of the special
 additive form (2.7). However, in the next three sections, to derive an explicit solution
 to the problem of optimal auction design, we shall have to restrict our attention to the
 class of problems in which (2.7) and (2.8) hold.

 4. Analysis of the problem. Given an auction mechanism (p, x) we define

 Qi(P, ti)=T Pi(t)f_i(t_i)dt_i (4.1)

 for any bidder i and any value estimate ti. So Qi(p, ti) is the conditional probability
 that bidder i will get the object from the auction mechanism (p, x) given that his value
 estimate is ti.

 Our first result is a simplified characterization of the feasible auction mechanisms.

 LEMMA 2. (p, x) is feasible if and only if the following conditions hold:

 if si < ti then Q(p, si) < Qi(p, ti), Vi E N, Vsi, ti E [ai, bi]; (4.2)

 Ui (p, x, ti) = Ui (p, x, a) + ft iQi(P, si)dsi, Vi E N, Vti [ ai, bi]; (4.3)
 ia

 Ui(p,x,ai) > 0, Vi iE N; (4.4)
 and

 j(t) < 1 and pi(t) > 0, Vi E N, Vt E T. (3.3)
 jEN

 PROOF. Using (2.8), our special assumption about the form of vi(t), we get

 fT (vi(t)pi(t_i,si) - xi(t_-i,si))f-i(t-_i)dt_i

 =fT ((vi(t-i,si) + (ti - si))pi(t_i,si)- xi(t_i,si))f_i(t_i)dt_i

 = Ui(p,x,si) + (ti - si)Qi(p,si).

 Thus, the incentive-compatibility constraint (3.5) is equivalent to

 Ui(p,x,ti) > Ui(p,x,si) + (ti - si) Qi(p,si), Vi E N, Vti,si E [ai,bi]. (4.6)

 Thus (p, x) is feasible if and only if (3.3), (3.4), and (4.6) hold. We will now show
 that (3.4) and (4.6) imply (4.2)-(4.4).
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 ROGER B. MYERSON

 Using (4.6) twice (once with the roles of si and ti switched), we get

 (ti - si) Qi(p,si) < Ui(p,x,t,) - Ui(p,x,s) < (ti - s) Q(p, ti).

 Then (4.2) follows, when si < ti.
 These inequalities can be rewritten for any 8 > 0

 Qi(p, si)3 < Ui(p, x,si + 8 ) - Ui(p,x, i) < Qi(p, Si + 8 ).

 Since Qi(p, si) is increasing in si, it is Riemann integrable. So:

 ' Qi(p, si) dsi = Ui(p, x, ti) - Ui(p, x, a,),

 which gives us (4.3).
 Of course, (4.4) follows directly from (3.4), so all the conditions in Lemma 2 follow

 from feasibility.
 Now we must show that the conditions in Lemma 2 also imply (3.4) and (4.6).

 Since Q,(p,s,) > 0 by (3.3), (3.4) follows from (4.3) and (4.4).
 To show (4.6), suppose si < ti; then (4.2) and (4.3) give us:

 Ui(p,x, ti) = Ui(p,x, si) + i Qi(p, ri)dri

 > Ui(p,x,si) + tQi(p, si)dr

 = Ui(p,x,Si) + (ti - si) Qi(p,si)

 Similarly, if s, > ti then

 Ui (p,x, ti) = U,(p,x, si) -fi Qi(p, ri)dr

 > Ui(p , x, si) s Qi(p, si)dri

 = Ui(p,x,si) + (ti - Si) Qi(p,si).

 Thus (4.6) follows from (4.2) and (4.3). So the conditions in Lemma 2 also imply
 feasibility. This proves the lemma.

 So (p, x) represents an optimal auction if and only if it maximizes U0(p, x) subject
 to (4.2)-(4.4) and (3.3). Our next lemma offers some simpler conditions for optimality.

 LEMMA 3. Suppose that p: T- Rn' maximizes

 ( 2 (- e( t) - Fi (ti) to)Pi( t)( t)dt (4.7)

 subject to the constraints (4.2) and (3.3). Suppose also that

 xi(t) =pi(t)vi(t)- tpi(t_i,si)dsi, Vi E N, Vt E T. (4.8)

 Then (p, x) represents an optimal auction.

 PROOF. Recalling (3.2), we may write the seller's objective function as

 Uo(p, x) =fvo(t)f(t) dt+ 2 fPi(t)(vi(t) - vo(t))f(t) dt

 + 2 (i(t) - pi(t)vi(t))f(t)dt. (4.9)
 i NE-T
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 OPTIMAL AUCTION DESIGN

 But, using Lemma 2, we know that for any feasible (p,x):

 f(xi(t) - Pi(t) i (t))f(t) dt

 = - fbiUi(p,x, ti)f(ti) dti
 ai

 =- i b(i (px ai) + tf Q (p,si)ds)f (t) dti
 bJ,\i bia~ /^(4.10)

 - i(p, x, ai) - b fi(ti) Qi(p, si) dti dsi

 -- Ui(p,x, ai) - bi(1 - Fi(si)) Q(p, si)dsi

 = -Ui (p, x, ai) - - Fi (ti))pi(t)f_ i(t i)dt.

 From (2.7) and (2.8) we get

 vi(t) - o(t) = ti - to - ei(ti). (4.11)

 Substituting (4.10) and (4.11) into (4.9) gives us:

 uo(p,x) JT i( ti - to - ei(ti) - (t) ~ pi(t) f(t) dt

 + (vo(t)f(t)dt- 2 Ui(p,x, a). (4.12)

 So the seller's problem is to maximize (4.12) subject to the constraints (4.2), (4.3),
 (4.4), and (3.3) from Lemma 2. In this formulation, x appears only in the last term of
 the objective function and in the constraints (4.3) and (4.4). These two constraints may
 be rewritten as

 IT (Pi(t)vi(t) - p(ti sidsi - x(t)-i(t-i) dt i

 = Ui(p,x, ai) > 0, Vi N, Vti E [ai, bi].

 If the seller chooses x according to (4.8), then he satisfies both (4.3) and (4.4), and he
 gets

 Ui(p,x, ai) = 0,
 iEN

 which is the best possible value for this term in (4.12).
 Thus using (4.8), we can drop x from the seller's problem entirely. Furthermore, the

 second term on the right side of (4.12) is a constant, independent of (p,x). So the
 objective function can be simplified to (4.7), and (4.2) and (3.3) are the only
 constraints left to be satisfied. This completes the proof of the lemma.

 Equation (4.12) also has an important implication which is worth stating as a
 theorem in its own right.

 COROLLARY (THE REVENUE-EQUIVALENCE THEOREM). The seller's expected utility
 from a feasible auction mechanism is completely determined by the probability function p
 and the numbers Ui(p, x, ai) for all i.

 That is, once we know who gets the object in each possible situation (as specified by p)
 and how much expected utility each bidder would get if his value estimate were at its
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 ROGER B. MYERSON

 lowest possible level ai, then the seller's expected utility from the auction does not depend
 on the payment function x. Thus, for example, the seller must get the same expected
 utility from any two auction mechanisms which have the properties that (1) the object
 always goes to the bidder with the highest value estimate above to and (2) every bidder
 would expect zero utility if his value estimate were at its lowest possible level. If the
 bidders are symmetric and all ei = 0 and ai = 0, then the Dutch auctions and progressive
 auctions studied in [11] both have these two properties, so Vickrey's equivalence results
 may be viewed as a corollary of our equation (4.12). However, we shall see that Vickrey's
 auctions are not in general optimal for the seller.

 5. Optimal auctions in the regular case. With a simple regularity assumption, we
 can compute optimal auction mechanisms directly from Lemma 3.

 We may say that our problem is regular if the function

 c,(ti) = ti - ei(ti) _ - F,(ti) (5.1)

 is a monotone strictly increasing function of ti, for every i in N. That is, the problem is
 regular if ci(si) < ci(ti) whenever ai < si < ti < bi. (Recall that we are assuming
 fi (ti) > 0 for all ti in [ai, bi, so that ci(ti) is always well defined and continuous.)

 Now consider an auction mechanism in which the seller keeps the object if
 to > maxiEN (ci(ti)), and he gives it to the bidder with the highest ci(ti) otherwise. If

 ci(ti) = cj(tj) = maxkEN (ck(tk)) > to, then the seller may break the tie by giving to the
 lower-numbered player, or by some other arbitrary rule. (Ties will only happen with
 probability zero in the regular case.) Thus, for this auction mechanism,

 pi(t) > 0 implies c,(ti) = max(cj(tj)) > to. (5.2)

 For all t in T, this mechanism maximizes the sum

 2 (Ci(ti)- tO)Pi(t)
 iEN

 subject to the constraints that

 2 pj(t) < 1 and pi(t) > 0, Vi.
 jEN

 Thus p maximizes (4.7) subject to the probability condition (3.3). To check that it also
 satisfies (4.2) we need to use regularity. Suppose si < ti. Then ci(si) < c(ti), and so
 whenever bidder i could win the object by submitting a value estimate of si, he could
 also win if he changed to ti. That is pi(t_i,si) < pi(t_i,ti), for all t_i. So Qi(p,ti), the
 probability of i winning the object given that ti is his value estimate, is indeed an
 increasing function of ti, as (4.2) requires. Thus p satisfies all the conditions of Lemma
 3.

 To complete the construction of our optimal auction, we let x be as in (4.8):

 xi (t) = pi (t) (ti + 2 e (t)) - Pi (t - , si) dsi.
 jEN i i-'
 j=i

 This formula may be rewritten more intuitively, as follows. For any vector t_ of value
 estimates from bidders other than i, let

 z,(t_,) =inf{s,i ci(s) > to and c,(si) > c.(t), Vjlj i}).

 66
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 Then zi(t_ ) is the infimum of all winning bids for i against t_i; so

 1 if Si > z,(t i),
 pi(t-i'-i) { - O if < z(t_i (54)

 This gives us

 t f 4 - Z (t...) if t > z (t-i), fS,(r i,Si)ds= < fv ~" ' (v -f/ (5.5) la p i(t-i'$i)di- ' 0 if t < zi(t_,).

 Finally, (4.8) becomes

 zi(t-i) + 2 e(tj) if pi(t)= 1,
 xi(t) j1 f (5.6)

 0 if pi(t) = O.
 That is, bidder i must pay only when he gets the object, and then he pays vi(t_i,
 zi(t_i)), the amount which the object would have been worth to him if he had
 submitted his lowest possible winning bid.
 If all the revision effect functions are identically zero (that is, ei(ti) = 0), and if all

 bidders are symmetric (ai = aj, bi = b, f(.) = fj(. )) and regular, then we get

 zi(t _) = max{ci-(to),maxt }. (5.7)

 That is, our optimal auction becomes a modified Vickrey auction [11], in which the
 seller himself submits a bid equal to ci- l (to) (notice that all ci = cj in this symmetric
 case, and regularity guarantees that ci is invertible) and then sells the object to the
 highest bidder at the second highest price. This conclusion only holds, however, when
 the bidders are symmetric and the c,(-) functions are strictly increasing.

 For example, suppose to = 0, each ai = 0, bi = 100, ei(ti) = 0, and f(t) = 1/100, for
 every i and every ti between 0 and 100. Then straightforward computations give us
 ci(ti) = 2ti - 100, which is increasing in ti. So the seller should sell to the highest bidder
 at the second highest price, except that he himself should submit a bid of ci- (0) = 0 +
 100/2 = 50. By announcing a reservation price of 50, the seller risks a probability
 (1/2)n of keeping the object even though some bidder is willing to pay more than to for
 it; but the seller also increases his expected revenue, because he can command a higher
 price when the object is sold.

 Thus the optimal auction may not be expost efficient. To see more clearly why this
 can happen, consider the example in the above paragraph, for the case when n = 1.
 Then the seller has value estimate to = 0, and the one bidder has a value estimate taken
 from a uniform distribution on [0, 100]. Ex post efficiency would require that the
 bidder must always get the object, as long as his value estimate is positive. But then the
 bidder would never admit to more than an infinitesimal value estimate, since any
 positive bid would win the object. So the seller would have to expect zero revenue if he
 never kept the object. In fact, the seller's optimal policy is to refuse to sell the object
 for less than 50, which gives him expected revenue 25.

 More generally, when the bidders are asymmetric, the optimal auction may some-
 times even sell to a bidder whose value estimate is not the highest. For example, when
 ei(ti) = 0 and fi(ti) = 1/(bi - ai) for all ti between ai and bi (the general uniform-
 distribution case with no revision effects) we get

 ci(ti) = 2ti- bi,

 67
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 which is increasing in ti. So in the optimal auction, the bidder with the highest ci(ti)

 will get the object. If bi < bj, then i may win the object even if ti < tj, as long as
 2ti - bi > 2tj - b. In effect, the optimal auction discriminates against bidders for
 whom the upper bounds on the value estimates are higher. This discrimination

 discourages such bidders from under-representing value estimates close to their high bj
 bounds.

 6. Optimal auctions in the general case. Without regularity, the auction mecha-
 nism proposed in the preceding section would not be feasible, since it would violate
 (4.2). To extend our solution to the general case, we need some carefully chosen
 definitions.

 The cumulative distribution function Fi [ai, bi]-->[0, 1] for bidder i is continuous
 and strictly increasing, since we assume that the density function f, is always strictly
 positive. Thus F,(.) has an inverse F,1i- [0, ]-> [ai, bi], which is also continuous and
 strictly increasing.

 For each bidder i, we now define four functions which have the unit interval [0, 1] as

 their domain. First, for any q in [0, 1], let

 hi(q) = Fi-1(q) - ei(Fi-'(q))- l q
 fi(Fi-'(q))

 = ci(Fi- (q)), (6.1)
 and let

 Hi(q) = fqh(r) dr. (6.2)

 Next let Gi:[0, 1]->R be the convex hull of the function Hi(-); in the notation of
 Rockafellar ([9, p. 36])

 G,(q) = conv Hi(q)

 = min{ wHi(r) + (1 - )Hi(r2)1

 {(A, rl,r2} C [0, 1] and r + (1 - w)r2= q}. (6.3)

 That is, G/(-) is the highest convex function on [0, 1] such that Gi(q) < Hi(q) for every
 q.

 As a convex function, G, is continuously differentiable except at countably many
 points, and its derivative is monotone increasing. We define g : [0, 1]-> R so that

 gi(q) = Gi'(q) (6.4)

 whenever this derivative is defined, and we extend gi,() to all of [0, 1] by right-
 continuity.

 We define C: [ai, bi] -> R so that

 cEi(ti) = gi(Fi(ti,)). (6.5)

 (It is straightforward to check that, in the regular case when ci(-) is increasing, we get
 Gi = Hi, gi = hi, and ci = ci.)
 Finally, for any vector of value estimates t, let M(t) be the set of bidders for whom

 c,(ti) is maximal among all bidders and is higher than t0.

 M(t) ={i to < i(ti) = maxc(t) }. (6.6) j ENJ
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 We can now state our main result: that in an optimal auction, the object should
 always be sold to the bidder with the highest ci(ti), provided this is not less than t0.
 Thus, we may think of ci(ti) as the priority level for bidder i when his value estimate is
 ti, in the seller's optimal auction.

 THEOREM. Let p: T--> R and x: T-> R" satisfy

 p(t) = ( 1/IM(t)l if i e M(t), (6.7)
 0 ifi 1 M(t),

 and

 xi (t) vi(t) - ti ip(t -i,si) dsi (6.8)

 for all i in N and t in T. Then (p, x) represents an optimal auction mechanism.

 PROOF. First, using integration by parts, we derive the following equations.

 f(hi(Fi(ti)) - g(Fi(ti)))pi(t)f(t) dt

 = bi(hi(Fi(ti))- gi(Fi(ti)))Qi(p, ti)fi(ti)dti
 J~~~~~~ait~~i (6.9)

 = ((Hi(Fi(ti)) - Gi(Fi(ti)))Qi(p,t ))bI =a

 -rbi (Hi (Fi (ti))- Gi (Fi (ti)))dQi (p, ti).
 ti = ai

 But Gi is the convex hull of Hi on [0, 1] and Hi is continuous, so Gi(0) = Hi(O) and
 Gi(l) = Hi(l). Thus the endpoint terms in the last expression above are zero.
 Now, recall the maximand (4.7) in Lemma 3. Using (6.9) we get:

 ti - ei(ti) - - Fi(ti) to)pi(t)f(t) dt

 + i (hi(Fi(ti)) - gi(Fi(ti)))pi(t)f(t) dt

 J-T( 2(ei(ti)- to)Pi(t))f(t)dt

 -- tJbi (Hi(Fi(ti))- G,(Fi(ti)))dQi(p, ti).
 iEN N =ai

 Now consider (p,x) as defined in the theorem. Observe that p always puts all

 probability on bidders for whom (ei(ti)- to) is nonnegative and maximal. Thus, for
 any p satisfying (3.3):

 fT(e(i(ti) - to)Pi(t))f(t)dt (6.11)

 > ( iN (( ti) -to)pi(t))f(t) dt.

 iENt^a

 Of course p itself does satisfy the probability condition (3.3).
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 For any p which satisfies (4.2) (that is, for which Qi(p, ti) is an increasing function of
 t,), we must have

 tbi (Hi(Fi(ti)) - Gi(Fi(ti)))dQi(p, ti) > 0 (6.12)
 ti= ai

 since Hi > Gi.
 To see that p satisfies (4.2), observe first that ci(ti) is an increasing function of ti,

 because Fi and gi are both increasing functions. Thus pi(t) is increasing as a function
 of ti, for any fixed t_i, and so Qi(p, ti) is also an increasing function of ti. Sop satisfies
 (4.2).

 Since G is the convex hull of H, we know that G must be flat whenever G < H; that

 is, if Gi(r) < Hi(r) then g;(r) = Gi"(r) = 0. So if Hi(Fi(ti)) - Gi(Fi(ti)) > 0 then ci(ti)
 and Qi(p, ti) are constant in some neighborhood of ti. This implies that

 fbi (Hi(Fi(ti)) - Gi(Fi(ti)))dQi(, ti) = 0. (6.13)
 -= ai

 Substituting (6.11), (6.12), and (6.13) back into (6.10), we can see that p maximizes
 (4.7) subject to (4.2) and (3.3). This fact, together with Lemma 3, proves the theorem.

 To get some practical interpretation for these important ci functions, consider the
 special case of n = 1; that is, suppose there is only one bidder. Then our optimal
 auction becomes:

 POO/ = I if 'l(tl) > to,
 Pl(tl) = (0 if cl(t) < t<

 Xl(tl) = pl(tl) * mint sl l(sl) > to})

 That is, the seller should offer to sell the object at the price

 l to) = min s Il(sl) > to

 and he should keep the object if the bidder is unwilling to pay this price.
 Thus, if bidder i were the only bidder, then the seller would sell the object to i if and

 only if ci(ti) were greater than or equal to to. In other words, ci(ti) is the highest level of
 to, the seller's personal value estimate, such that the seller would sell the object to i at a
 price of ti or lower, if all other bidders were removed.

 7. The independence assumption. Throughout this paper we have assumed that
 the bidders' value estimates are stochastically independent. Independence is a strong
 assumption, so we now consider an example to show what optimal actions may look
 like when value estimates are not independent.

 For simplicity, we consider a discrete example. Suppose there are two bidders, each
 of whom may have a value estimate of ti = 10 or ti = 100 for the object. Let us assume
 that the joint probability distribution for value estimates (tl, t2) is:

 Pr(10, 10) = Pr(100, 100) = 3,

 Pr(10, 100) = Pr(100, 10) = 6.

 Obviously the two value estimates are not independent. Let us also assume that there
 are no revision effects (e* = 0), and to = 0.

 Now consider the following auction mechanism. If both bidders have high value
 estimates (t, = t2 = 100), then sell the object to one of them for price 100, randomizing
 equally to determine which bidder buys the object. If one bidder has a high value
 estimate (100) and the other has a low value estimate (10), then sell the object to the
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 high bidder for 100, and charge the low bidder 30 (but give him nothing). If both
 bidders have low value estimates (10), then give 15 units of money to one of them, and
 give 5 units of money and the object to the other, again choosing the recipient of the
 object at random.

 The outcome functions (p,x) of this auction mechanism are:

 p(100, 100) = (I ,4) =p(10, 10),

 p(10, 100) = (0, 1), p(100, 10) = (1,0),

 x(100, 100) = (50,50), x(0,10) = (- 10, - 10),

 x(10, 100) = (30, 100),x(100, 10) = (100,30).

 This may seem like a very strange auction, but in fact it is optimal. It is straightfor-
 ward to check that honesty is a Nash equilibrium in this auction game, in that neither
 bidder has any incentive to misrepresent his value estimate if he expects the other
 bidder to be honest. Furthermore, the object is always delivered to a bidder who values
 it most highly; and yet each bidders' expected utility from this auction mechanism is
 zero, whether his value is high or low. So this auction mechanism is feasible and it
 allows the seller to exploit the entire value of the object from the bidders. Thus this is
 an optimal auction mechanism, and it gives the seller expected revenue

 Uo(p,x) = ](100) + K(130) + 1(130) + 1(-20) = 70.

 To see why this auction mechanism works so well, observe that the seller is really
 doing two things. First, he is selling the object to one of the highest bidders at the
 highest bidders' value estimate. Second, if a bidder says his value estimate is equal to
 10, then that bidder is forced to accept a side-bet of the following form: "pay 30 if the
 other bidder's value is 100, get 15 if the other bidder's value is 10." This side-bet has
 expected value 0 to a bidder whose value estimate is truly 10, since then the
 conditional probability is 1/3 that the other has value 100 and 2/3 that the other has
 value 10. But if a bidder were to lie and claim to have value estimate 10, when 100 was
 his true value estimate, then this side-bet would have expected value 2 (- 30) + 3 (10)
 =- 5 for him (since he would now assess conditional probabilities 2 and 1 3 3 3

 respectively for the events that his competitor had value estimate 100 and 10). This
 negative expected value of the side-bet for a lying bidder exactly counterbalances the
 temptation to misrepresent in order to buy the object at a lower price.
 These side-bets were not possible in the independent case, because each bidders'
 condition probability distribution over the others' value estimates was constant. But in
 the general non-independent case, we may expect that this side-bet phenomenon will
 commonly arise. That is, the seller can exploit the full value of the object by always
 selling to the highest bidder at the highest bidders' valuation, and then by setting up
 side-bets which have zero expected value if a bidder is honest but have negative
 expected value if he lies. If the side-bets are carefully designed, they can counterbal-
 ance the incentive to lie to buy the object at a lower price.
 Of course, we have made heavy use of the risk-neutrality assumption in this analysis.
 For risk-averse bidders, the optimal auctions might be somewhat less extreme. Also,
 the auction game suggested in our example has an unfortunate second equilibrium in
 which both bidders always claim to be of the low type, although other optimal auction
 mechanisms can be designed in which the honest equilibrium is unique.2 (For example,

 2Eric Maskin and John Riley have recently studied conditions under which such uniqueness can be
 guaranteed.
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 change x to:

 x(100, 100) = (100, 100), x(10, 10) = (- 15, - 15),

 x(10, 100) = (40,0), x(100, 10) = (0,40);

 keeping p as above.)
 One might ask whether there are any optimal auctions for our example which do not

 have this strange property of sometimes telling the seller to pay money to the bidders.
 The answer is No; if we add the constraint that the seller should never pay money to
 the bidders (that is, all xi(t) > 0), then no feasible auction mechanism gives the seller
 expected utility higher than 662 . To prove this fact, observe that the auction design
 problem is a linear programming problem when the number of possible value estimates

 is finite, as in this example. The objective function in the problem is Uo(p, x), which is
 linear in p and x. As in ?2, the feasibility constraints are of three types: probability
 constraints (p,(t) > 0, ipi(t) < 1), individual-rationality constraints (Ui(p,x,ti) > 0),
 and incentive-compatibility constraints (that Ui(p, x, ti) must be greater than or equal
 to the utility which i would expect from acting as if si were his value estimate when ti
 was true). All of these constraints are linear in p and x. So we get a linear
 programming problem, and for our example its optimal value is 70, with the optimal
 solution shown above. But if we add the constraints xi(t) > 0 for all i and t, then the
 optimal value drops to 66 2, for this example. To attain this "second-best" value of
 662 with nonnegative x, the seller should keep the object if t1 = t2 = 10, and otherwise
 the seller should sell the object to a high bidder for 100.

 8. Implementation. A few remarks about the implementability of our optimal
 auctions should now be made. Once the f and ei functions have been specified, the
 only computations necessary to implement our optimal auction are to compute the ci
 functions and to evaluate (6.8). But these are all straightforward one-dimensional
 problems. The equilibrium strategies for the bidders are also easy to compute in our
 optimal auction, since each bidder's optimal strategy is to simply reveal his true value
 estimate.

 In terms of sensitivity analysis, notice that (6.8) guarantees that our auction
 mechanism (p, x) will be feasible, and yet the densities f do not appear in (6.8). So our
 optimal auction will satisfy the individual-rationality and incentive-compatibility con-
 straints ((3.4) and (3.5)) even if the density functions are misspecified from the point of
 view of the bidders. However the revision-effect functions ei do appear in (6.8)
 (through vi), so if there are errors in specifying the ei functions then bidders may have
 incentive to bid dishonestly in the auction we compute.

 In general, we must recognize that an auction design problem must be treated like
 any problem of decision-making under uncertainty. No auction mechanism can
 guarantee to the seller the full realization of his object's value under all circumstances.
 Thus, the seller must make his best assessment of the probabilities and choose the
 auction design which offers him the highest expected utility, on average. The usual
 "garbage-in, garbage-out" warning must apply here, as in all operations research, but
 careful use of models and sensitivity analysis should enable a seller to improve his
 average revenues with optimally designed auctions.

 References

 [1] Griesmer, J. H., Levitan, R. E. and Shubik, M. (1967). Towards a Study of Bidding Processes, Part
 Four: Games with Unknown Costs. Naval Res. Logist. Quart. 14 415-433.

 [2] Harris, M. and Raviv, A. (1978). Allocation Mechanism and the Design of Auction. Working Paper,
 Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA.

 72

This content downloaded from 
�������������50.199.227.73 on Sat, 04 Oct 2025 17:25:17 UTC������������� 

All use subject to https://about.jstor.org/terms



 OPTIMAL AUCTION DESIGN

 [3] Harsanyi, J. C. (1967-1968). Games with Incomplete Information Played by "Bayesian" Players.
 Management Sci. 14 159-189, 320-334, 486-502.

 [4] Maskin, E. and Riley, J. G. (1980). Auctioning an Indivisible Object. Discussion Paper No. 87D,
 Kennedy School of Government, HIarvard University.

 [5] Milgrom, P. R. (1979). A Convergence Theorem for Competitive Bidding with Differential Informa-
 tion. Econometrica. 47 679-688.

 [6] Myerson, R. B. (1979). Incentive Compatibility and the Bargaining Problem. Econometrica. 47 61-73.
 [7] Ortega-Reichert, A. (1968). Models for Competitive Bidding under Uncertainty. Technical Report No.

 8, Department of Operations Research, Stanford University.
 [8] Riley, J. G. and Samuelson, W. F. (to appear). Optimal Auctions. American Economic Review.
 [9] Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press, Princeton.

 [10] Rothkopf, M. H. and Stark, R. M. (1979). Competitive Bidding: a Comprehensive Bibliography. OR.
 27 364-390.

 [11] Vickrey, W. (1961). Counterspeculation, Auctions and Competitive Sealed Tenders. Journal of Finance.
 16 8-37.

 [12] Wilson, R. B. (1967). Competitive Bidding with Asymmetrical Information. Management Sci. 13
 A816-A820.

 [13] . (1969). Competitive Bidding with Disparate Information. Management Sci. 15 446-448.
 [14] . (1977). A Bidding Model of Perfect Competition. Review of Economic Studies 44 511-518.

 GRADUATE SCHOOL OF MANAGEMENT, NORTHWESTERN UNIVERSITY, 2001 SHERIDAN
 ROAD, EVANSTON, ILLINOIS 60201

 73

This content downloaded from 
�������������50.199.227.73 on Sat, 04 Oct 2025 17:25:17 UTC������������� 

All use subject to https://about.jstor.org/terms


	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8
	image 9
	image 10
	image 11
	image 12
	image 13
	image 14
	image 15
	image 16

	Issue Table of Contents
	Mathematics of Operations Research, Vol. 6, No. 1, Feb., 1981
	Front Matter
	Editorial Statement [p.  i]
	Cooperative Fuzzy Games [pp.  1 - 13]
	An Exact Penalty Method for Mixed-Integer Programs [pp.  14 - 18]
	Minimization by Random Search Techniques [pp.  19 - 30]
	The System Point Method in Exponential Queues: A Level Crossing Approach [pp.  31 - 49]
	Location on Tree Networks: P-Centre and n-Dispersion Problems [pp.  50 - 57]
	Optimal Auction Design [pp.  58 - 73]
	Analysis of Greedy Solutions for a Replacement Part Sequencing Problem [pp.  74 - 87]
	The Lexicographic Kernel of a Cooperative Game [pp.  88 - 100]
	On the Generality of the Subadditive Characterization of Facets [pp.  101 - 112]
	Relationships between Some Notions Which Are Common to Reliability Theory and Economics [pp.  113 - 121]
	Value Theory without Efficiency [pp.  122 - 128]
	A Modified Integer Labeling for Complementarity Algorithms [pp.  129 - 139]
	Discontinuous Optimization by Smoothing [pp.  140 - 152]
	Minimizing Maximum Lateness in a Two-Machine Open Shop [pp.  153 - 158]
	Back Matter



