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OPTIMAL AUCTION DESIGN*+

ROGER B. MYERSON

Northwestern University

This paper considers the problem faced by a seller who has a single object to sell to one of
several possible buyers, when the seller has imperfect information about how much the buyers
might be willing to pay for the object. The seller’s problem is to design an auction game which
has a Nash equilibrium giving him the highest possible expected utility. Optimal auctions are
derived in this paper for a wide class of auction design problems.

1. Introduction. Consider the problem faced by someone who has an object to
sell, and who does not know how much his prospective buyers might be willing to pay
for the object. This seller would like to find some auction procedure which can give
him the highest expected revenue or utility among all the different kinds of auctions
known (progressive auctions, Dutch auctions, sealed bid auctions, discriminatory
auctions, etc.). In this paper, we will construct such optimal auctions for a wide class
of sellers’ auction design problems. Although these auctions generally sell the object at
a discount below what the highest bidder is willing to pay, and sometimes they do not
even sell to highest bidder, we shall prove that no other auction mechanism can give
higher expected utility to the seller.

To analyze the potential performance of different kinds of auctions, we follow
Vickrey [11] and study the auctions as noncooperative games with imperfect informa-
tion. (See Harsanyi [3] for more on this subject.) Noncooperative equilibria of specific
auctions have been studied in several papers, such as Griesmer, Levitan, and Shubik
[1], Ortega-Reichert [7], Wilson [12], [13]. Wilson [14] and Milgrom [5] have shown
asymptotic optimality properties for sealed-bid auctions as the number of bidders goes
to infinity. Harris and Raviv [2] have found optimal auctions for a class of symmetric
two-bidder auction problems. Independent work on optimal auctions has also been
done by Riley and Samuelson [8] and Maskin and Riley [4]. A general bibliography of
the literature on competitive bidding has been collected by Rothkopf and Stark [10].

The general plan of this paper is as follows. §2 presents the basic assumptions and
notation needed to describe the class of auction design problems which we will study.
In §3, we characterize the set of feasible auction mechanisms and show how to
formulate the auction design problem as a mathematical optimization problem. Two
lemmas, needed to analyze and solve the auction design problem, are presented in §4.
§5 describes a class of optimal auctions for auction design problems satisfying a
regulatory condition. This solution is then extended to the general case in §6. In §7, an
example is presented to show the kinds of counter-intuitive auctions which may be
optimal when bidders’ value estimates are not stochastically independent. A few
concluding comments about implementation are put forth in §8.
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OPTIMAL AUCTION DESIGN 59

2. Basic definitions and assumptions. To begin, we must develop our basic defini-
tions and assumptions, to describe the class of auction design problems which this
paper will consider. We assume that there is one seller who has a single object to sell.
He faces n bidders, or potential buyers, numbered 1,2, ..., n. We let N represent the
set of bidders, so that

N={(l,...,n). 2.1)

We will use i and j to represent typical bidders in N.

The seller’s problem derives from the fact that he does not know how much the
various bidders are willing to pay for the object. That is, for each bidder i, there is
some quantity ¢ which is i’s value estimate for the object, and which represents the
maximum amount which i would be willing to pay for the object given his current
information about it.

We shall assume that the seller’s uncertainty about the value estimate of bidder i can
be described by a continuous probability distribution over a finite interval. Specifi-
cally, we let a; represent the lowest possible value which i might assign to the object;
we let b, represent the highest possible value which i might assign to the object; and we
let f;:[a;, 5] >R, be the probability density function for i’s value estimate 7. We
assume that: —oo < a; < b; < +o0; f(1) >0, V¢, €[a;,b,]; and f,(-) is a continuous
function on [a;,b;]. F;:[a;,b]—[0,1] will denote the cumulative distribution function
corresponding to the density f;(-), so that

F(n)= Ltifi(si) ds;. (22)

Thus F,(¢) is the seller’s assessment of the probability that bidder i has a value
estimate of ¢ or less.

We will let T denote the set of all possible combinations of bidders’ value estimates;
that is,

T=[a;,b] X --- X[a,b,] (2.3)

For any bidder i, we let T_; denote the set of all possible combinations of value
estimates which might be held by bidders other than i, so that

T_,= X |a,b;|. 24

X, la:8] 4
J#i

Until §7, we will assume that the value estimates of the n bidders are stochastically

independent random variables. Thus, the joint density function on T for the vector
t=(t,...,t,) of individual value estimates is

fa =TI 5. (2:5)
JEN

Of course, bidder i considers his own value estimate to be a known quantity, not a
random variable. However, we assume that bidder i assesses the probability distribu-
tions for the other bidders’ value estimates in the same ways as the seller does. That is,
both the seller and bidder i assess the joint density function on T_; for the vector
t_i=(,. s ti_1stipys ..., t,) of values for all bidders other than i to be

f-it-y =TI £@)- (2.6)
JEN
Ji
The seller’s personal value estimate for the object, if he were to keep it and not sell it

to any of the n bidders, will be denoted by #,. We assume that the seller has no private
information about the object, so that ¢, is known to all the bidders.
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60 ROGER B. MYERSON

There are two general reasons why one bidder’s value estimates may be unknown to
the seller and the other bidders. First, the bidder’s personal preferences might be
unknown to the other agents (for example, if the object is a painting, the others might
not know how much he really enjoys looking at the painting). Second, the bidder
might have some special information about the intrinsic quality of the object (he might
know if the painting is an old master or a copy). We may refer to these two factors as
preference uncertainty and quality uncertainty.! This distinction is very important. If
there are only preference uncertainties, then informing bidder i about bidder j’s value
estimate should not cause i to revise his valuation. (This does not mean that i might
not revise his bidding strategy in an auction if he knew j’s value estimate; this means
only that i’s honest preferences for having money versus having the object should not
change.) However, if there are quality uncertainties, then bidder i/ might tend to revise
his valuation of the object after learning about other bidders’ value estimates. That is,
if i learned that ¢, was very low, suggesting that j had received discouraging informa-
tion about the quality of the object, then i might honestly revise downward his
assessment of how much he should be willing to pay for the object.

In much of the literature on auctions (see [11], for example), only the special case of
pure preference uncertainty is considered. In this paper, we shall consider a more
general class of problems, allowing for certain forms of quality uncertain as well.
Specifically, we shall assume that there exist n revision effect functions e;:[a;,b]—>R
such that, if another bidder i learned that #; was ;’s value estimate for the object, then i
would revise his own valuation by ¢;(1). Thus, if bidder i learned that 1 = (¢, ..., t,)
was the vector of value estimates initially held by the n bidders, then i would revise his
own valuation of the object to

o) =4+ X (1) (2.7)
JEN
JEi
Similarly, we shall assume that the seller would reassess his personal valuation of the
object to

(1) = to+ 2 €(t) (2:8)
JEN

if he learned that ¢ was the vector of value estimates initially held by the bidders. In
the case of pure preference uncertainty, we would simply have e,(¢,) = 0.

(To justify our interpretation of # as i’s initial estimate of the value of the object, we
should assume that these revision effects have expected-value zero, so that

[Pes)dy=o. (29)

However, this assumption is not actually necessary for any of the results in this paper;
without it, only the interpretation of the ¢, would change.)

3. Feasible auction mechanisms. Given the density functions f; and the revision
effect functions ¢, and v, as above, the seller’s problem is to select an auction
mechanism to maximize his own expected utility. We must now develop the notation
to describe the auction mechanisms which he might select. To begin, we shall restrict
our attention to a special class of auction mechanisms: the direct revelation mecha-
nisms.

In a direct revelation mechanism, the bidders simultaneously and confidentially
announce their value estimates to the seller; and the seller then determines who gets

'T am indebted to Paul Milgrom for pointing out this distinction.
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OPTIMAL AUCTION DESIGN 61

the object and how much each bidder must pay, as some functions of the vector of
announced value estimates ¢ =(¢,,...,t,). Thus, a direct revelation mechanism is
described by a pair of outcome functions (p,x) (of the form p: T—>R" and x: T>R")
such that, if 7 is the vector of announced value estimates then p,(f) is the probability
that i gets the object and x;(¢) is the expected amount of money which bidder i must
pay to the seller. (Notice that we allow for the possibility that a bidder might have to
pay something even if he does not get the object.)

We shall assume throughout this paper that the seller and the bidders are risk
neutral and have additively separable utility functions for money and the object being
sold. Thus, if bidder i knows that his value estimate is #;, then his expected utility from
an auction mechanism described by (p, x) is

Ulpxot) = [ (5(Opi(8) = XD (1- ) (3
where dt _;

j=dty.ood_d, ...t
Similarly, the expected utility for the seller from this auction mechanism is

Up) = [ (o1 = 5, p0) + 3 5o (32)

where dt = dt, . . . dt,.

Not every pair of functions ( p, x) represents a feasible auction mechanism, however.
There are three types of constraints which must be imposed on (p, x).

First, since there is only one object to be allocated, the function p must satisfy the
following probability conditions:

EN;;J.(t) <1 and p(1)>0, VieN, VteT. (3.3)
J

Second, we assume that the seller cannot force a bidder to participate in an auction
which offers him less expected utility then he could get on his own. If he did not
participate in the auction, the bidder could not get the object, but also would not pay
any money, so his utility payoff would be zero. Thus, to guarantee that the bidders will
participate in the auction, the following individual-rationality conditions must be
satisfied:

U(p,x,t;) >0, ViEN, V, E[a,b]. (34)

Third, we assume that the seller could not prevent any bidder from lying about his
value estimate, if the bidder expected to gain from lying. Thus the revelation mecha-
nism can be implemented only if no bidder ever expects to gain from lying. That is,
honest responses must form a Nash equilibrium in the auction game. If bidder i
claimed that s, was his value estimate when #, was his true value estimate, then his
expected utility would be

[ PG s) = X o) (i

where (¢_;,8)=(t;,...,4_,8,t+...,1,). Thus, to guarantee that no bidder has
any incentive to lie about his value estimate, the following incentive-compatibility
conditions must be satisfied:

U(p,x.1) >fT_ (OO 1v5) = Xty s)f - (1) _, (35)

VieN, Vit €[a,b), Vs €[a,b].
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62 ROGER B. MYERSON

We say that (p, x) is feasible (or that (p, x) represents a feasible auction mechanism)
iff (3.3), (3.4), and (3.5) are all satisfied. That is, if the seller plans to allocate the object
according to p and to demand monetary payments from bidders according to x, then
the scheme can be implemented, with all bidders willing to participate honestly, if and
only if (3.3)-(3.5) are satisfied.

Thus far, we have only considered direct revelation mechanisms, in which the
bidders are supposed to honestly reveal their value estimates. However, the seller could
design other kinds of auction games. In a general auction game, each bidder has some
set of strategy options ®;; and there are outcome functions

p:Ox---x0,->R" and £:0,x--- X0,>R",

which described how the allocation of the object and the bidders’ fees depend on the
bidders’ strategies. (That is, if # = (8,, . . ., 8,) were the vector of strategies used by the
bidder in the auction game, then p,(#) would be the probability of i/ getting the object
and £;(@) would be the expected payment from i to the seller.)

An auction mechanism is any such auction game together with a description of the
strategic plans which the bidders are expected to use in playing the game. Formally, a
strategic plan can be represented by a function 0 [a;,b]— ©;, such that ) .(2,) is the
strategy which i/ is expected to use in the auction game if his value estimate is #. In this
general notation, our direct revelation mechanisms are simply those auction mecha-
nisms in which 0, = [a;,b,] and é, (L) =t

In this general framework, a feasible auction mechanism must satisfy constraints
which generalize (3.3)—(3.5). Since there is only one object, the probabilities p;(§) must
be nonnegative and sum to one or less, for any 8. The auction mechanism must offer
nonnegative expected utility to each bidder, given any possible value estimate, or else
he would not participate in the auction. The strategic plans must form a Nash
equilibrium in the auction game, or else some bidder would revise his plans.

It might seem that problem of optimal auction design must be quite unmanageable,
because there is no bound on the size or complexity of the strategy spaces ©; which the
seller may use in constructing the auction game. The basic insight which enables us to
solve auction design problems is that there is really no loss of generality in considering
only direct revelation mechanisms. This follows from the following fact.

LEMMA 1. (THE REVELATION PRINCIPLE.) Given any feasible auction mechanism, there
exists an equivalent feasible direct revelation mechanism which gives to the seller and all
bidders the same expected utilities as in the given mechanism.

This revelation principle has been proven in the more general context of Bayesian
collective choice problems, as Theorem 2 in [6]. To see why it is true, suppose that we
are given a feasible auction mechanism with arbitrary strategy spaces ©,, with outcome
functions  and £, and with strategic plans §, as above. Then consider the direct
revelation mechanism represented by the functions p : T—>R" and x : T—>R" such that

Pt t)=p (0t - -, 0.(1,)),
X(t o) =2(0y(1), - . ., 0,(1)).

That is, in the direct revelation mechanism (p, x), the seller first asks each bidder to
announce his type, and then computes the strategy which the bidder would have used
according to the strategic plans in the given auction mechanism, and finally imple-
ments the outcomes prescribed in the given auction game for these strategies. Thus, the
direct revelation mechanism (p,x) always yields the same outcomes as the given
auction mechanism, so all agents get the same expected utilities in both mechanisms.
And (p,x) must satisfy the incentive-compatibility constraints (3.5), because the
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OPTIMAL AUCTION DESIGN 63

strategic plans formed an equilibrium in the given feasible mechanism. (If any bidder
could gain by lying to the seller in the revelation game, then he could have gained by
“lying to himself” or revising his strategic plan in the given mechanism.) Thus, (p, x) is
feasible.

Using the revelation principle, we may assume, without loss of generality, that the
seller only considers auction mechanisms in the class of feasible direct revelation
mechanisms. That is, we may henceforth identify the set of feasible auction mecha-
nisms with the set of all outcome functions (p,x) which satisfy the constraints (3.3)
through (3.5). The seller’s auction design problem is to choose these functions p: T
—>R" and x : T>R" so as to maximize Uy p, x) subject to (3.3)—(3.5).

Notice that we have not used (2.7) or (2.8) anywhere in this section. Thus (3.3)-(3.5)
characterize the set of all feasible auction mechanisms even when the bidders compute
their revised valuations v,(¢) using functions v, : T— R, which are not of the special
additive form (2.7). However, in the next three sections, to derive an explicit solution
to the problem of optimal auction design, we shall have to restrict our attention to the
class of problems in which (2.7) and (2.8) hold.

4. Analysis of the problem. Given an auction mechanism (p, x) we define
Qi(p-1) =J;, 'Pi(t)f—i(t-i)dt—i (4.1

for any bidder i and any value estimate #,. So Q,(p,t,) is the conditional probability
that bidder i will get the object from the auction mechanism (p, x) given that his value
estimate is ¢;.

Our first result is a simplified characterization of the feasible auction mechanisms.

LEMMA 2. (p,x) is feasible if and only if the following conditions hold:
if <t then Q(p.s;)< Qi(p.t;), ViEN, Vs,t,E€[a,b]; (4.2)
U(px, 1) = Ul(p,x,a) + f “Q(p.s)ds, Vi€N, Vi€[a,b];  (43)
Ui(p,x,a) >0, VieN, (44
and

(<1 and pi(t)>0, VieN, VieT. 33
_ENPj JAQ) (3-3)
J

Proor. Using (2.8), our special assumption about the form of v;(¢), we get

L”.(vi(t)]’i(t—i’si) = Xi(t_ps))fi(t_y)dt_;
=L_,((vi(t_i’si) + (L= s))pi(t-is) = x(E_ps)f(1-)dt_;
=U(p,x5) + (= 5)Qi(P>5)-

Thus, the incentive-compatibility constraint (3.5) is equivalent to
U(p:x,t) 2 U(p,x,5) + (4, — 5) Qi(p,s)), VIiEN, Vi,5,€[a,b]. (4.6)

Thus (p, x) is feasible if and only if (3.3), (3.4), and (4.6) hold. We will now show
that (3.4) and (4.6) imply (4.2)-(4.4).
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64 ROGER B. MYERSON

Using (4.6) twice (once with the roles of s; and ¢ switched), we get
(4 = 5) Q(p>5) < Ui(p> x, 1) = Ui(p> %,5) < (4 = 5:) Qu(p: 1)-

Then (4.2) follows, when s, < ¢,.
These inequalities can be rewritten for any § > 0

Q0:(p,5)8 < Uy(p,x,5,+ 8) — Uy(p,x,5) < Qi(p,s; + 8)d.

Since Q,(p,s;) is increasing in s, it is Riemann integrable. So:
j:i Qi(l’,s;) dS,-= (]i(p,x, ti) - U’.(p,x, a‘,),

which gives us (4.3).
Of course, (4.4) follows directly from (3.4), so all the conditions in Lemma 2 follow
from feasibility.
Now we must show that the conditions in Lemma 2 also imply (3.4) and (4.6).
Since Q;(p,s;) > 0 by (3.3), (3.4) follows from (4.3) and (4.4).
To show (4.6), suppose s; < ¢;; then (4.2) and (4.3) give us:

Ui(px.t) = U(p,x,s;) +fs.ti Q.(p,r))dr;
t
> Ulp.x.s) + [ Qu(p.s)dr,

= Ui(p,x,5) + (4 — 5) Qi( P, 5)-
Similarly, if s5; > ¢; then

Ulp.x.t) = Upxss) = [*Qporyd
> Ulpxs) = [ 0oy

= Ui(px,5) + (4= ) O(py5)-

Thus (4.6) follows from (4.2) and (4.3). So the conditions in Lemma 2 also imply
feasibility. This proves the lemma.

So (p, x) represents an optimal auction if and only if it maximizes Uy(p, x) subject
to (4.2)-(4.4) and (3.3). Our next lemma offers some simpler conditions for optimality.

LemMMA 3. Suppose that p : T > R" maximizes
1 - F(t) )
t— e(t) — ——— —to|p:i(0) |f(¥) at 4.7
fr(,-ez,v( ()= o[ ))f() (47
subject to the constraints (4.2) and (3.3). Suppose also that
(1) = p(1)v,(t) — f “p(t_ps)ds, ViEN, VIET. (4.8)

Then (p, x) represents an optimal auction.

ProoF. Recalling (3.2), we may write the seller’s objective function as
Us(p,%) = [ou(0f(d+ 3, [ p(e)(o(t) = o )f(e)de
+ 3 [ (60 = p(ye()f(rydt. 49)
ieNYT
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OPTIMAL AUCTION DESIGN 65

But, using Lemma 2, we know that for any feasible (p, x):
[0 = p(ye)a
= = ["U(px (1)

- [H(vtpxa) + [* 0psydsic
= —U(pxa) = [*[* (1) 0 prs)duds,
~U(pxa) = [ (1= Fis)Q(p.5)ds
= U(px.a) = [ (1= F)P(Of-i(1-) .
From (2.7) and (2.8) we get

v,(1) — vo(t) = t; — 1y — €(1))- (4.11)
Substituting (4.10) and (4.11) into (4.9) gives us:

(4.10)

1 - F(¢
Uo(p> x) =fT( iezN(ti i S A ) e '7('%’)‘ )Pi(t))f(t) dt

+ fT oo(1)f(1)dt - EZNU,‘( 2. %,). (4.12)

So the seller’s problem is to maximize (4.12) subject to the constraints (4.2), (4.3),
(4.4), and (3.3) from Lemma 2. In this formulation, x appears only in the last term of
the objective function and in the constraints (4.3) and (4.4). These two constraints may
be rewritten as

fT _(Pi(t)'-’i(’) —J;'tipi(t-—i’si)dsi - xi(t))f—i(t—i)dt—i
= U(p,x,a4) >0, ViEN, Vi, €[a,b].

If the seller chooses x according to (4.8), then he satisfies both (4.3) and (4.4), and he
gets

2 Ui(p,x,a) =0,
iEN

which is the best possible value for this term in (4.12).

Thus using (4.8), we can drop x from the seller’s problem entirely. Furthermore, the
second term on the right side of (4.12) is a constant, independent of (p,x). So the
objective function can be simplified to (4.7), and (4.2) and (3.3) are the only
constraints left to be satisfied. This completes the proof of the lemma.

Equation (4.12) also has an important implication which is worth stating as a
theorem in its own right.

COROLLARY (THE REVENUE-EQUIVALENCE THEOREM). The seller’s expected utility
from a feasible auction mechanism is completely determined by the probability function p
and the numbers U,(p, x,a;) for all i.

That is, once we know who gets the object in each possible situation (as specified by p)
and how much expected utility each bidder would get if his value estimate were at its
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66 ROGER B. MYERSON

lowest possible level a;, then the seller’s expected utility from the auction does not depend
on the payment function x. Thus, for example, the seller must get the same expected
utility from any two auction mechanisms which have the properties that (1) the object
always goes to the bidder with the highest value estimate above t, and (2) every bidder
would expect zero utility if his value estimate were at its lowest possible level. If the
bidders are symmetric and all e, = 0 and a; = 0, then the Dutch auctions and progressive
auctions studied in [11] both have these two properties, so Vickrey’s equivalence results
may be viewed as a corollary of our equation (4.12). However, we shall see that Vickrey’s
auctions are not in general optimal for the seller.

5. Optimal auctions in the regular case. With a simple regularity assumption, we
can compute optimal auction mechanisms directly from Lemma 3.
We may say that our problem is regular if the function
1-F(1) 5.1)
c)y=t—e(l) — —F7— .
(1) = 1= &(0) = —p (

is a monotone strictly increasing function of #, for every i in N. That is, the problem is
regular if ¢(s;) <c/(¢) whenever g, <s; <t <b;. (Recall that we are assuming
f; () > 0 for all ¢ in [a;, ], so that ¢,(#,) is always well defined and continuous.)

Now consider an auction mechanism in which the seller keeps the object if
t, > max,c v (¢;(%)), and he gives it to the bidder with the highest c,(#) otherwise. If
() = (1) = max, ¢ y (c, (%)) > f,, then the seller may break the tie by giving to the
lower-numbered player, or by some other arbitrary rule. (Ties will only happen with
probability zero in the regular case.) Thus, for this auction mechanism,

p;(t) >0 implies ¢;(#) = %aﬁ(c}.(tj)) > 1. (5:2)
For all ¢ in T, this mechanism maximizes the sum
2 (ci(t) = o)pi(?)
iEN
subject to the constraints that

2 p(n<1 and p(r)>0, Vi
JEN

Thus p maximizes (4.7) subject to the probability condition (3.3). To check that it also
satisfies (4.2) we need to use regularity. Suppose s; < ¢,. Then ¢,(s;) < ¢;(¢,), and so
whenever bidder i could win the object by submitting a value estimate of s;, he could
also win if he changed to ¢. That is p;(¢_,,s) < p,(1_;,1,), for all 1_,. So Q.(p,t,), the
probability of i winning the object given that ¢ is his value estimate, is indeed an
increasing function of ¢, as (4.2) requires. Thus p satisfies all the conditions of Lemma
3.
To complete the construction of our optimal auction, we let x be as in (4.8):

x;(?) =Pi(t)(t,. + 2 e,-(t,-)) _f’ip‘,(t_,'ssi)dsi.
JEN a;
=i

This formula may be rewritten more intuitively, as follows. For any vector ¢_; of value
estimates from bidders other than i, let

z(t_;) =inf(s;|c(s;) > 1o and ¢(s) > ¢(8), Vj#i}. (53)
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Then z,(¢_)) is the infimum of all winning bids for i/ against 7_;; so
1 ifs; > z(2_),

54
0 ifs <z(z_). 4

pi(t_is) = [

This gives us

. L—z(toy) it > z(e),
li (t is 8; dg= 5.5
-L,- Pit-p5)ds 0 if g, <z(1_)) )

Finally, (4.8) becomes

(1) + 3 e(y) ip(n=1,
x(1) = S (56)
0 if pi(t) =0.

That is, bidder i must pay only when he gets the object, and then he pays v;(z_,,
z;(t_,)), the amount which the object would have been worth to him if he had
submitted his lowest possible winning bic.

If all the revision effect functions are identically zero (that is, ¢;(#,) = 0), and if all
bidders are symmetric (¢; = a;, b, = b;, fi(+) = f(*)) and regular, then we get

z(t_) = max{ c‘_l(to)’?iftf}' (5.7)

That is, our optimal auction becomes a modified Vickrey auction [11], in which the
seller himself submits a bid equal to ¢;”' (#,) (notice that all ¢, = c; in this symmetric
case, and regularity guarantees that c; is invertible) and then sells the object to the
highest bidder at the second highest price. This conclusion only holds, however, when
the bidders are symmetric and the c;(+) functions are strictly increasing.

For example, suppose #, = 0, each 4, = 0, b, = 100, ¢,(t;) = 0, and f;(¢,) = 1/100, for
every i and every ¢, between 0 and 100. Then straightforward computations give us
¢;(t;) = 2t;, — 100, which is increasing in #,. So the seller should sell to the highest bidder
at the second highest price, except that he himself should submit a bid of ¢, '(0) = 0 +
100/2 = 50. By announcing a reservation price of 50, the seller risks a probability
(1/2)" of keeping the object even though some bidder is willing to pay more than ¢, for
it; but the seller also increases his expected revenue, because he can command a higher
price when the object is sold.

Thus the optimal auction may not be expost efficient. To see more clearly why this
can happen, consider the example in the above paragraph, for the case when n = 1.
Then the seller has value estimate 7, = 0, and the one bidder has a value estimate taken
from a uniform distribution on [0, 100]. Ex post efficiency would require that the
bidder must always get the object, as long as his value estimate is positive. But then the
bidder would never admit to more than an infinitesimal value estimate, since any
positive bid would win the object. So the seller would have to expect zero revenue if he
never kept the object. In fact, the seller’s optimal policy is to refuse to sell the object
for less than 50, which gives him expected revenue 25.

More generally, when the bidders are asymmetric, the optimal auction may some-
times even sell to a bidder whose value estimate is not the highest. For example, when
e(t)=0 and f(1,)=1/(b; — a;) for all ¢, between a; and b, (the general uniform-
distribution case with no revision effects) we get

a(t)=2-0b,
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which is increasing in #. So in the optimal auction, the bidder with the highest c;(#;)
will get the object. If b; < b;, then i may win the object even if ¢; <, as long as
2t; — b;>2t;— b;. In effect, the optimal auction discriminates against bidders for
whom the upper bounds on the value estimates are higher. This discrimination
discourages such bidders from under-representing value estimates close to their high b;
bounds.

6. Optimal auctions in the general case. Without regularity, the auction mecha-
nism proposed in the preceding section would not be feasible, since it would violate
(4.2). To extend our solution to the general case, we need some carefully chosen
definitions.

The cumulative distribution function F;:[a;,b]->[0,1] for bidder i is continuous
and strictly increasing, since we assume that the density function f; is always strictly
positive. Thus F,(-) has an inverse F,~!:[0, 1] [a;, b,], which is also continuous and
strictly increasing.

For each bidder i/, we now define four functions which have the unit interval [0, 1] as
their domain. First, for any ¢ in [0, 1], let

1-
h(g) = F'(9) - e(F'(9) —
(9) (9) — &(F'(9) @)
= (@) (61)
and let
Hi(g) = [ h(r)dr. (62)

Next let G;:[0,1]> R be the convex hull of the function H;(-); in the notation of
Rockafellar ([9, p. 36])

Gi(q) = conv Hy(q)
= min{wH;(r;) + (1 — w)H,(r,)|
{0,r;,r;} C[0,1] and wr + (1-w)r,=gq)}. (63)

That is, G,(-) is the highest convex function on [0, 1] such that G;(¢q) < H,(q) for every

q.
As a convex function, G; is continuously differentiable except at countably many
points, and its derivative is monotone increasing. We define g; : [0, 1] >R so that

8(9) = G/(9) (64)

whenever this derivative is defined, and we extend g;(-) to all of [0,1] by right-
continuity.
We define ¢; :[a;, 5] >R so that

a(4) = &(Fi(1)- (65)
(It is straightforward to check that, in the regular case when ¢;(-) is increasing, we get
G=H,g=h,and ¢ =c.)

Finally, for any vector of value estimates ¢, let M (¢) be the set of bidders for whom
C;(t,) is maximal among all bidders and is higher than ¢,.

M(1) = {ilto < &(t) = maxg (1) . (6.6)
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We can now state our main result: that in an optimal auction, the object should
always be sold to the bidder with the highest ¢,(¢,), provided this is not less than ¢,.
Thus, we may think of ¢;(t) as the priority level for bidder i when his value estimate is
t;, in the seller’s optimal auction.

THEOREM. Let p:T—>R" and X : T—>R" satisfy

1/|M ifie M(1),
ﬁ,-(t)={0/ O (67)
and

%i(t) = p(Hu(?) _Lfiﬁi(t—i’si) ds; (6-3)

for all i in N and t in T. Then (p,X) represents an optimal auction mechanism.

Proor. First, using integration by parts, we derive the following equations.
Jm(E@w) = s(E@)pofd
= [2((E() = s ()P 01 &,
= (Hi(Fi(1)) = G(F(1))2(P-t))li=g
= [ (H(F() = G(E(1)d0(p:1).
But G; is the convex hull of H; on [0, 1] and H; is continuous, so G;(0) = H,(0) and

G;(1) = H,(1). Thus the endpoint terms in the last expression above are zero.
Now, recall the maximand (4.7) in Lemma 3. Using (6.9) we get:

(6.9)

1 - F(t)
Liezn(ti —e(t) — W _to)Pi(t)f(’) dt

= [ 2 (W(F(t) — wpf
= . 2 (@@~ opofd
+ 3 [ (W(E®) = s(F@)p0f 1) dr
iEN
= J( = (&) - w0y a
- iEENf,:ai(Hi(E(h)) = G,(Fi(%,)))dQ:(p:t)-

(6.10)

Now consider (p,x) as defined in the theorem. Observe that p always puts all
probability on bidders for whom (¢,(¢,) — ¢,) is nonnegative and maximal. Thus, for
any p satisfying (3.3):

J( Z @~ wpm)oa
EN (6.11)
>[( 3 @@ - oo
T\ieN

Of course p itself does satisfy the probability condition (3.3).
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For any p which satisfies (4.2) (that is, for which Q,(p, ) is an increasing function of
t,), we must have

7 (H(E@) = G(F(1))dQi(pt) > O (6.12)

since H; > G,.

To see that p satisfies (4.2), observe first that ¢,() is an increasing function of ¢,
because F; and g; are both increasing functions. Thus p,(¢) is increasing as a function
of ¢, for any fixed ¢_,, and so Q,(,,) is also an increasing function of ¢,. So p satisfies
4.2).

Since G is the convex hull of H, we know that G must be flat whenever G < H; that
is, if G;(r) < H;(r) then g/(r) = G/"(r) = 0. So if H,(F,(1)) — G,(F,(£;)) >0 then &;(¢)
and Q,(p,) are constant in some neighborhood of ¢;. This implies that

% (H(F(8) = GF(1)dQ(5.t) =O. 6.13)

Substituting (6.11), (6.12), and (6.13) back into (6.10), we can see that j maximizes
(4.7) subject to (4.2) and (3.3). This fact, together with Lemma 3, proves the theorem.

To get some practical interpretation for these important ¢; functions, consider the
special case of n=1; that is, suppose there is only one bidder. Then our optimal
auction becomes:

1 ife,(4) > t,

Pi(h) = {0 if €,() < to,

X,(t;) = pi(t;) - min{ s, |E,(sy) > fo}-
That is, the seller should offer to sell the object at the price
El_ l(to) = min{sl IE](S]) > to},

and he should keep the object if the bidder is unwilling to pay this price.

Thus, if bidder i were the only bidder, then the seller would sell the object to i if and
only if ¢,(t;) were greater than or equal to #,. In other words, ¢;(¢,) is the highest level of
1y, the seller’s personal value estimate, such that the seller would sell the object to i at a
price of ¢, or lower, if all other bidders were removed.

7. The independence assumption. Throughout this paper we have assumed that
the bidders’ value estimates are stochastically independent. Independence is a strong
assumption, so we now consider an example to show what optimal actions may look
like when value estimates are not independent.

For simplicity, we consider a discrete example. Suppose there are two bidders, each
of whom may have a value estimate of ¢, = 10 or #, = 100 for the object. Let us assume
that the joint probability distribution for value estimates (¢,,1,) is:

Pr(10, 10) = Pr(100,100) = 1,
Pr(10, 100) = Pr(100,10) = {.

Obviously the two value estimates are not independent. Let us also assume that there
are no revision effects (e; = 0), and ¢, = 0.

Now consider the following auction mechanism. If both bidders have high value
estimates (¢, = t, = 100), then sell the object to one of them for price 100, randomizing
equally to determine which bidder buys the object. If one bidder has a high value
estimate (100) and the other has a low value estimate (10), then sell the object to the
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high bidder for 100, and charge the low bidder 30 (but give him nothing). If both
bidders have low value estimates (10), then give 15 units of money to one of them, and
give 5 units of money and the object to the other, again choosing the recipient of the
object at random.

The outcome functions (p, x) of this auction mechanism are:

P(100,100) = (3,3) = p(10,10),
(10,100) = (0, 1, p(100,10) = (1,0),
x(100,100) = (50, 50), x(10, 10) = (— 10, — 10),
x(10, 100) = (30, 100), x(100, 10) = (100, 30).

This may seem like a very strange auction, but in fact it is optimal. It is straightfor-
ward to check that honesty is a Nash equilibrium in this auction game, in that neither
bidder has any incentive to misrepresent his value estimate if he expects the other
bidder to be honest. Furthermore, the object is always delivered to a bidder who values
it most highly; and yet each bidders’ expected utility from this auction mechanism is
zero, whether his value is high or low. So this auction mechanism is feasible and it
allows the seller to exploit the entire value of the object from the bidders. Thus this is
an optimal auction mechanism, and it gives the seller expected revenue

Uy(p»x) = $(100) + 1(130) + 1(130) + 4 (—20) = 70.

To see why this auction mechanism works so well, observe that the seller is really
doing two things. First, he is selling the object to one of the highest bidders at the
highest bidders’ value estimate. Second, if a bidder says his value estimate is equal to
10, then that bidder is forced to accept a side-bet of the following form: “pay 30 if the
other bidder’s value is 100, get 15 if the other bidder’s value is 10.” This side-bet has
expected value 0 to a bidder whose value estimate is truly 10, since then the
conditional probability is 1/3 that the other has value 100 and 2/3 that the other has
value 10. But if a bidder were to lie and claim to have value estimate 10, when 100 was
his true value estimate, then this side-bet would have expected value Z(—30) + 1(10)
= —3 for him (since he would now assess conditional probabilities 2 and 1
respectively for the events that his competitor had value estimate 100 and 10). This
negative expected value of the side-bet for a lying bidder exactly counterbalances the
temptation to misrepresent in order to buy the object at a lower price.

These side-bets were not possible in the independent case, because each bidders’
condition probability distribution over the others’ value estimates was constant. But in
the general non-independent case, we may expect that this side-bet phenomenon will
commonly arise. That is, the seller can exploit the full value of the object by always
selling to the highest bidder at the highest bidders’ valuation, and then by setting up
side-bets which have zero expected value if a bidder is honest but have negative
expected value if he lies. If the side-bets are carefully designed, they can counterbal-
ance the incentive to lie to buy the object at a lower price.

Of course, we have made heavy use of the risk-neutrality assumption in this analysis.
For risk-averse bidders, the optimal auctions might be somewhat less extreme. Also,
the auction game suggested in our example has an unfortunate second equilibrium in
which both bidders always claim to be of the low type, although other optimal auction
mechanisms can be designed in which the honest equilibrium is unique.? (For example,

2Eric Maskin and John Riley have recently studied conditions under which such uniqueness can be
guaranteed.
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change x to:
x(100,100) = (100,100),  x(10,10) = (—15, —15),
x(10,100) = (40,0),  x(100, 10) = (0,40);

keeping p as above.)

One might ask whether there are any optimal auctions for our example which do not
have this strange property of sometimes telling the seller to pay money to the bidders.
The answer is No; if we add the constraint that the seller should never pay money to
the bidders (that is, all x;(¢) > 0), then no feasible auction mechanism gives the seller
expected utility higher than 662. To prove this fact, observe that the auction design
problem is a linear programming problem when the number of possible value estimates
is finite, as in this example. The objective function in the problem is Uy(p, x), which is
linear in p and x. As in §2, the feasibility constraints are of three types: probability
constraints (p;(#) > 0,3, p,(¢) < 1), individual-rationality constraints (U(p,x,t,) > 0),
and incentive-compatibility constraints (that U,(p, x, ;) must be greater than or equal
to the utility which / would expect from acting as if s; were his value estimate when
was true). All of these constraints are linear in p and x. So we get a linear
programming problem, and for our example its optimal value is 70, with the optimal
solution shown above. But if we add the constraints x;(¢) > 0 for all i and ¢, then the
optimal value drops to 66%, for this example. To attain this “second-best” value of
66Z with nonnegative x, the seller should keep the object if ¢, = ¢, = 10, and otherwise
the seller should sell the object to a high bidder for 100.

8. Implementation. A few remarks about the implementability of our optimal
auctions should now be made. Once the f; and ¢; functions have been specified, the
only computations necessary to implement our optimal auction are to compute the ¢,
functions and to evaluate (6.8). But these are all straightforward one-dimensional
problems. The equilibrium strategies for the bidders are also easy to compute in our
optimal auction, since each bidder’s optimal strategy is to simply reveal his true value
estimate.

In terms of sensitivity analysis, notice that (6.8) guarantees that our auction
mechanism (p, X) will be feasible, and yet the densities f; do not appear in (6.8). So our
optimal auction will satisfy the individual-rationality and incentive-compatibility con-
straints ((3.4) and (3.5)) even if the density functions are misspecified from the point of
view of the bidders. However the revision-effect functions e; do appear in (6.8)
(through v;), so if there are errors in specifying the e, functions then bidders may have
incentive to bid dishonestly in the auction we compute.

In general, we must recognize that an auction design problem must be treated like
any problem of decision-making under uncertainty. No auction mechanism can
guarantee to the seller the full realization of his object’s value under all circumstances.
Thus, the seller must make his best assessment of the probabilities and choose the
auction design which offers him the highest expected utility, on average. The usual
“garbage-in, garbage-out” warning must apply here, as in all operations research, but
careful use of models and sensitivity analysis should enable a seller to improve his
average revenues with optimally designed auctions.
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