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 Econometrica, Vol. 54, No. 4 (July, 1986), 755-784

 PATENTS AS OPTIONS: SOME ESTIMATES OF THE VALUE
 OF HOLDING EUROPEAN PATENT STOCKS

 BY ARIEL PAKES'

 In many countries patentees must pay an annual renewal fee in order to keep their
 patents in force. This paper presents and then estimates a model which uses observations
 on the proportion of different cohorts of patents which are renewed at alternative ages,
 and the relevant renewal fee schedules, to estimate the distribution of the returns earned
 from holding patents, and the evolution of this distribution function over the lifespan of
 the patents. Since patents are often applied for at an early exploratory stage of the innovation
 process, the model allows patentees to be uncertain about the sequence of returns that will
 be earned if the patent is kept in force. The paper solves the implied optimal stopping
 problem for the micro units, derives the implications of these solutions on the aggregate
 proportions renewed, and then estimates the parameters of the model from the aggregate
 data. Separate estimates are obtained from data on post World War II cohorts of patents
 in each of France, the United Kingdom, and Germany.

 KEYWORDS: optimal stopping, maximum likelihood, simulation estimator, patent rights,
 renewal fees, option values, the value of patent protection.

 IN MANY COUNTRIES holders of patents must pay an annual renewal fee in order
 to keep their patents in force. If the renewal fee is not paid in any single year,
 the patent is permanently cancelled. Assuming that renewal decisions are based
 on economic criteria, agents will only renew their patents if the value of holding
 those patents over an additional year exceeds the cost of renewal. Observations
 on the proportions of different cohorts of patents which are renewed at alternative
 ages, together with the relevant renewal fee schedules, will, in this case, contain
 information on the distribution of the values of holding patents, and on the
 evolution of this distribution function over the lifespan of the patents. Since
 patent rights are seldom marketed, this is one of the few sources of information
 on the value of patents available. This paper presents and then estimates a model
 which allows us to recover the distribution of returns from holding patents at

 each age over the lifespan of patents from information on patent renewals.
 Separate estimates are obtained from data on post World War II cohorts of
 patents in each of the United Kingdom, France, and Germany (renewal fees were
 not instituted in the United States until 1982). These estimates enable calculations

 l I have benefited from the comments of many individuals in the course of this study, among them
 John Bound, Zvi Griliches, Bronwyn Hall, Jerry Hausman, James Heckman, Tom Kurtz, Charles
 Manski, Daniel McFadden, Andrew Meyers, Dvora Ross, John Rust, Mark Schankerman, three
 referees, and an editor of this journal. I am particularly indebted to Charles Manski and Zvi Griliches
 for a series of discussions which contributed a great deal to the development of this paper; and to
 James Heckman, John Rust, and the participants in an informal seminar chaired by Charles Manski
 and Daniel McFadden for comments that facilitated the solution to various problems. This paper is
 an offshoot of ongoing research with Mark Schankerman. The research was supported by the NSF
 through Grant PRA 81-08635. I am thankful to Andrew Meyers, Dvora Ross, and Tom Abbott for
 superb programming assistance. All errors, of course, remain my responsibility.
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 756 ARIEL PAKES

 of: the value, to patent holders, of the proprietary rights created by the patent
 laws, the distribution of this value among patents, and the process which deter-

 mines the evolution of the value of patents over their lifespans.

 This is not the first time patent renewal data have been used to estimate

 parameters of the distribution of patent values. In a previous paper (see Pakes

 and Schankerman (1978)) intercountry differences in the proportion of patents
 renewed and in renewal fee schedules faced by cohorts of European patents were

 used to estimate the rate of obsolescence on the returns from holding patents.
 The earlier paper assumed that cohorts of patents were endowed with a distribu-

 tion of initial current returns which decayed deterministically thereafter.
 Methodologically, the major innovation in this paper is that it does not assume

 that the sequence of returns that will accrue to the patent if it is to be kept in
 force is known with certainty at the time the patent is applied for. The generaliz-

 ation to an uncertain sequence of returns is to allow for the fact that agents often

 apply for patents at an early stage in the innovation process, a stage in which

 the agent is still exploring alternative opportunities for earning returns from use
 of the information embodied in the patented ideas. In part early patenting arises
 from the incentive structure created by the patent system, since, if the agent does
 not patent the information available to him, somebody else might. This incentive

 is reinforced by the fact that the renewal fees in all countries studied are quite

 small during the early ages of a patent's life.

 A patent holder who pays the renewal fee obtains both the current returns that
 accrue to the patent over the coming period, and the option to pay the renewal
 fee and maintain the patent in force in the following period should he desire to
 do so. An agent who acts optimally will pay the renewal fee only if the sum of
 the current returns plus the value of this option exceeds the renewal fee. It will
 be assumed that the agent values the option at the expected discounted value of
 future net returns (current returns minus renewal fees), taking account of the
 fact that an optimal policy will be followed in each future period, and conditional

 on the information currently at the disposal of the agent. An optimal sequential
 policy for the agent has the form of an optimal renewal (or stopping) rule, a rule
 determining whether to pay the renewal at each age. The proportion of patents
 who drop out at age a is the proportion who do not satisfy the renewal criteria

 at that age, but who did at age a -1. The drop out proportions predicted by the
 model will be a function of the precise value of the vector of the model's
 parameters, and of the renewal fee schedules. The data provide the actual
 proportion of drop outs. Roughly speaking, the estimation problem is to find

 those values of the model's parameters which make the drop out proportions
 implied by the model as "close" as possible to those we actually observe.

 Formally then, this paper presents and solves an optimal stopping model,
 derives the implications of this model on aggregate behavior, and then estimates
 the parameters of the model from aggregate data. Though optimal stopping
 models have appeared in the economic literature in several contexts (see, for
 example, Roberts and Weitzman (1981)), I do not know of another paper which
 derives an estimator for one's parameters. There have, however, been a small
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 PATENTS AS OPTIONS 757

 number of recent studies which estimated alternative types of discrete choice

 optimal stochastic control models on micro data. In particular, Miller (1984)

 estimates a job matching model, and Wolpin (1984) estimates a sequential binary
 choice model for the birth sequences of married women. Though the techniques

 developed in both of these papers have a range of applications and provide an

 extremely rich interpretation of the data, they have one troublesome aspect which

 is shared by this paper. In all these models both the estimation technique and

 the empirical results depend on the details of the stochastic specification and,
 because of the complexity of the estimation problem, it is difficult to determine

 the robustness of the conclusions to the stochastic assumptions chosen (a point

 which we return to below). The model used here embeds a Markov assumption,
 an assumption that the distribution of the next period's return conditional on

 current information depends only on current returns and the parameters of the

 problem, in a search model with three types of outcomes. Each year the agents

 perform experiments to explore alternative ways of best exploiting their patented
 ideas. One possible outcome of these experiments is that they provide no new

 information, another is that they determine that the patented ideas can never be

 profitably exploited, and the third is that the experiments indicate a use which

 allows the agent to increase the returns which accrue to the patent at subsequent
 ages. The conditional distribution of beneficial outcomes, should they occur, is

 not assumed, a priori, to be stationary over ages. This nonstationarity is to allow

 for the possibility that agents explore their most promising alternatives first, a
 possibility which is distinctly favored by the data. In addition, since there is a
 statutory limit to patent lives (an age beyond which the agent cannot keep the
 patent in force by payment of an annual fee), the model has a finite horizon.

 Given our assumptions, it is possible to obtain an explicit solution for the
 renewal rule as a function of the parameters of the Markov process, the age of

 the patent, and the renewal fee schedules. This simplifies the estimation problem

 considerably. On the other hand, the model is not as benevolent with respect to

 the calculation of the aggregate drop out probabilities. To allow for heterogeneity,
 it is assumed that there is a distribution of initial returns among patents. This

 distribution is modified over time as agents uncover more profitable ways of

 exploiting their patented ideas. The distribution of returns at each age does not
 have, to the best of my knowledge, an analytic form, and, as a consequence,

 neither do the drop out probabilities. I therefore resort to the simulated frequency
 approach, suggested by Lerman and Manski (1981), to estimate these probabilities
 for different values of the parameter vector.

 Section 1 provides an overview of the renewal model used in this paper, while
 Section 2 fills in the details of its stochastic specification. In Section 3, I explain
 the estimation algorithm. Section 4 describes the data, provides the estimates,
 and considers their implications. This last section includes a characterization of
 the process by which the distribution of current returns earned from holding the
 patents in a cohort evolves over time, and explicit calculations of both the annual
 flow of returns resulting from the proprietary rights created by the patent laws,
 and of the distribution of the value of holding the patents in a cohort.
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 758 ARIEL PAKES

 1. A DESCRIPTION OF THE MODEL

 This section provides an overview of the renewal model used in this paper. It

 begins by considering the decision problem faced by an agent who holds a patent,

 and ends with the likelihood function implied by our assumptions.

 The agent's problem is to decide on whether to pay a renewal fee which will
 keep the patent in force over the coming year. If the renewal fee is not paid, the

 patent is permanently cancelled. If the renewal fee is paid and the age of the
 patent is less than the statutory limit to patent lives, the agent will face a similar
 problem at the beginning of the next year. If the patent's age equals the statutory
 limit to patent lives, the current is the last year the agent can keep the patent in

 force by payment of a renewal fee.
 Agents are assumed to maximize the expected discounted value of the net

 returns from their actions, and may be uncertain about the sequence of returns

 that will be earned if the patent is kept in force. An implication of this uncertainty
 is that there is a positive probability that the agent will discover a use for the
 patented ideas which makes future returns to patent protection significantly higher

 than those being currently earned, and this probability may induce the agent to
 pay the current renewal fee even if current returns are lower than the cost of
 renewal.

 Let V(a) be the expected discounted value of patent protection to the agent
 just prior to its ath renewal. If the renewal fee is not paid the patent lapses and
 V(a) = . If the renewal fee is paid the agent earns the current return to patent
 protection and, in addition, maintains the option to renew and keep the patent
 in force at age a + 1. The value of this option equals the expected discounted

 value of the patent at age a + 1 conditional on current information. Formally then,

 (1) V(a) = max {O, ra +?3E[ V(a + 1) 1I a]-ca} (a = 1, .. ., L),

 where L is the statutory limit to patent lives, ra is the current return to patent

 protection, Da is the information set of the agent in the patents ath year, Ca is
 the cost of renewal, and it is understood that zero is an absorbing state in the

 stochastic process generating { V(a)}IL 1 (so that if the patent is not renewed at
 any age it will not be in force thereafter). In equation (1), ra + 3E [ V(a + 1)1 Q2a]
 is the total benefit from holding the patent (the sum of current returns and the
 discounted value of the option). If this expression is less than ca, the agent lets
 the patent lapse.

 To complete the description of the value function the conditional distributions

 of future returns and costs of renewal must be specified. Given these distributions,

 the solution for the sequence { V(a)}IL=l can be obtained by starting with the
 terminal equation, i.e., V(L) = max {0, rL - cL}L and integrating the system in (1)
 backwards recursively. Assumptions 1 and 2 provide the general properties of
 these distribution functions.

 AssuMPTION 1 (Al): Pr(z>ra+iIQa)=G(zlr=ra, a, W,g), where Pr(-I-)
 denotes a conditional probability statement, and wtg is a vector of parameters.
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 PATENTS AS OPTIONS 759

 ASSUMPTION 2 (A2): Agents hold point expectations on the renewal fees that
 will be required to keep the patent in force at later ages equal to the current real
 renewal fees for those ages. Moreover the renewal fee schedule in every year is
 nondecreasing in age.

 These assumptions simplify the analysis considerably. Assumption A2 was

 motivated by the fact that the renewal fee schedules are published data, and
 though these schedules are changed periodically, the real renewal fee at any age
 does not vary much with the year the patent reaches that age. It is also a fact
 that all the renewal fee schedules are nondecreasing in age (see Section 4.1). I
 will assume an exogenously given initial distribution of current returns to patent
 protection (this differentiates among patents). Assumption Al assumes that the
 stochastic process generating subsequent returns (i.e., generating {ra}a=2) is both
 Markov and the same for all patents.

 To characterize the solution to the agent's decision problem I need more
 detailed assumptions on this Markov process. These additional assumptions are
 first explained, and then gathered into Assumption 3 below. I assume that the
 probability that next year's returns are greater than any given number is larger
 the higher are current returns (A3.3). Second, though the sequence of conditional

 distributions, i.e. {G( . I 1, a)}al=1, need not be stationary over age, they cannot
 become "better" at too fast a pace. A condition which suffices to rule out this
 possibility is that, for any given value of current returns, the probability that next
 year's returns is greater than some number is nonincreasing in age (A3.4). This
 type of nonstationarity turns out to be an important feature of the empirical
 results, and is discussed in more detail below. Finally I require regularity condi-
 tions that insure the finiteness and continuity of the value function (A3.1 and
 A3.2).

 AssuMPTION 3: (A3.1) There exists an E such that E[r'+eIrl]<oo (a =2, ...
 L; r1 E R+). (A3.2) G(z I r, a) is continuous in r at every z except, possibly, at values
 of z at which G(zI r, a) has a discontinuity in z. (A3.3) G(zI r, a) is nonincreasing
 in r. (A3.4) G(z r, a) is nondecreasing in a. [In A3.2 to A3.4, it is to be understood
 that a = 1, ..., L- 1; (z, r) E R2; and that the conditional distributions are also
 indexed by the parameter vector, tog.]

 Assumptions Al and A2 imply that the value of the option to renew the patent

 (i.e., E[ V(a + 1) Ina]) depends only on current returns and parameters which
 do not vary among patents of a given age (,l, wg, and the current vector of renewal
 fees). If, for convenience, we omit these latter parameters from the notation, then
 the value function (equation 1) can be rewritten as

 (2) V(a, r) = max {O, r +?/3E[ V(a + 1) I r, a] - ca} (a = 1, ... I L),

 2 Note that these conditions do not rule out conditional distributions with mass points, a common
 characteristic of the Markov processes used in search models.
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 760 ARIEL PAKES

 where E[ V(a + 1) I r, a] JR, V(a + 1, z)G(dz I r, a). Clearly in order to character-
 ize the situations in which it is optimal to renew the patent, we require the
 properties of the function determining the option value. These properties are
 provided in Lemma 1 and explained immediately thereafter.

 LEMMA 1 (proved in Appendix A): The value of the option, that is E[ V(a + 1) 1 r,
 a], is continuous and nondecreasing in r, and nonincreasing in a (re R+, a = 1,

 ...,I L).

 Figure 1 illustrates the form of the function determining the total benefits from

 renewing (r + /E [ V(a + 1) I r, a]). Since V(a + 1, z) - 0 with probability one, the
 value of the option is nonnegative, and the total benefits are greater than r (the
 45 degree line). Further, the assumption that the probability that future returns
 are greater than some number is larger the higher are current returns implies that
 the value of the option (the difference between the total benefit curve and the
 45 degree line) is increasing in r. As the patent ages there are less future years
 in which the patent can earn returns, renewal fees rise, and the distribution of

 future returns conditional on current r is not as benevolent (see A3.4). These
 conditions insure that the option value is decreasing in age for each r. Note that

 $ r+,fE[ V(a + )1r, a]
 ,/+f3E[V(a +2)Ir, a +1]

 5 /

 r-a Fa+, Ca Ca+1 r

 FIGURE I.-Determining { a}a= 1
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 PATENTS AS OPTIONS 761

 though the total benefit function is continuous in r everywhere, it need not be
 differentiable in r.3

 Recall that the agent renews the patent if the total benefits from renewal exceed

 ca. Proposition 1, which provides an optimal renewal rule for the agent, is an
 immediate consequence of Lemma 1.

 PROPOSITION 1 (illustrated in Figure 1): For each age there exists a unique

 fa E [0, Ca], such that it is optimal for the agent to renew the patent if and only if
 ra : Fa. Moreover, the sequence {f a }F '=, is nondecreasing in a.

 Figure 1 explains this proposition. The 45 degree line enables us to find the
 point at which the vertical axis equals ca. Comparing the values of the total

 benefit curve to this point it is clear that r +,BE[ V(a +1) Ir, a] ca, according
 as r r Pa. This, in turn, implies the simple renewal criteria provided in the
 proposition-renew if and only if current returns, ra, are greater than the cutoff,

 ra. Note that Fa - ca, so that in general the difference ca - Fa is positive. If ra E (Qa,
 ca) it is optimal for the agent to take a loss in current net returns (ra - ca < 0) in
 order to maintain the option of patent protection in the future. This is one
 difference between a myopic model, wherein returns decay deterministically over
 time and an agent would not renew unless ra > ca, and the stochastic model. It
 can be shown that the difference between the renewal fee and the cutoff, i.e.,
 ca - ra, is nondecreasing in the current renewal fee (ca), nonincreasing in the
 renewal fees for later ages (ca+, r> 0), and, at least in the later ages, nonincreas-
 ing in age (since L is the last year the patent can be kept in force c - r L= 0).
 The fact that the renewal fees are increasing in age, while the option value is
 decreasing, implies that the cutoffs are increasing in age. This result is used in
 the derivation of the properties of our estimator, and, in addition, enables us to
 simplify the form of the function of age, cog, and the renewal fee schedules which
 determines the precise values of the cutoffs (see Section 3).

 It is now straightforward, at least conceptually, to determine the proportion

 of patents holders who drop out, that is who stop paying the renewal fee, at each
 age. First note that the distribution of initial returns (which I denote by F(r, 1;
 w1), where w1 is a vector of parameters), the stochastic process generating
 subsequent returns, the renewal fee schedules, and the renewal rule, determine
 the (unconditional) distribution of returns at each age, say F(r, a), where

 (3) 1 - F(r, a) = Pr {ra ? r, ra1 ? ra-1,- r2 > r2, r1 > r1}

 (a=2,...,L,reR+).

 Here it is understood that F(*) depends on co = [cog, coj, and on the vector of
 renewal fee schedules faced by the cohort, say c. Note also that the definition in
 (3) insures that if the patent is not renewed in any period there are no returns
 to patent protection thereafter (i.e. subsequent returns are less than any r E R+).

 3This is a result of the twin facts that the value function is calculated as the maximum of two
 other functions, and that the conditional distributions of returns may have mass points. The value
 function is not differentiable everywhere for the particular special case we estimate.
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 762 ARIEL PAKES

 Proposition 1 implies that the proportion of patent holders who pay the renewal
 at age a is the proportion with current returns above ra, or 1 -F(ia, a). Since
 the proportion who drop out at age a, say 1r(a), is simply the difference between
 the proportions not paying the renewal fee at age a and those not paying the
 renewal at age a-1,

 (4) ir(a) = F(a, a)-F(ia-i, a-1) (a 2,.

 where it is understood that ir() depends also on co and c, and that F(TI, 1) = 0
 (there is no renewal fee required for the initial year of patent protection).4

 Equation (4) provides the theoretical probabilities required to calculate the
 likelihood function implied by the model. In order to formulate this likelihood
 function explicitly, we require some characteristics of the data (Section 4 provides
 more detail on the data set). The data contain information on different cohorts
 of patents, where a cohort is defined by the year the patent was applied for. For
 some of these cohorts we do not observe the patents dropping out at later ages,
 and for some we do not observe those dropping out at earlier ages (there is
 censoring from both the left and the right). Let the index j distinguish between
 alternative cohorts, let f1 and Ij be the first and last ages at which we observe the
 number of patentees paying the renewal for cohort j, and let Aj = {j;, f; + 1, ... .
 Ij, Ij+ 1}, for j = 1, .. ., J. The set Aj indexes the distinct cells in which a patent
 of cohort j could be observed. The first cell corresponds to patents which dropped
 out before (or at) age fj, the next Ij -If - 1 cells correspond to patents which drop
 out at each subsequent age until (and including) Ij, and the final cell corresponds
 to patents which were still being renewed at Ij. The data include, for each cohort,
 the number of patents observed in each of these cells, or the sequence

 {n(a, j)} I , and the vector of renewal fee schedules faced by the cohort, or cj.
 Now consider a patent drawn randomly from a given cohort. It will either

 drop out by age fj, drop out at a subsequent age before (or including) Ij, or still
 be paying the renewal fee at Ij. Equation (4) implies that the probabilities of
 these mutually exclusive and exhaustive alternatives are given by

 f,

 E iTG(a, Cj) for a =f,
 ac=

 1 - i1(a,cj) fora=1+ 1,
 a-=1

 With these definitions, the (log) likelihood of a particular value of the parameter
 vector conditional on the observed data, or l(w), is

 (6) l(a)) E E n(a,j) log IiF(a,j; ).
 j=1 acAj

 4 For the particular stochastic specification introduced in the next section this is insured by setting
 cl = 0, which will imply both that Fr = 0, and that the presence of r- in equations (3) and (4) does
 not affect their values.
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 PATENTS AS OPTIONS 763

 Our estimator of co maximizes the likelihood in equation (6), and properties

 of this maximum likelihood estimator are provided in Proposition 2 below. First,
 however, an explanation is in order. The asymptotic distribution provided in this
 proposition follows from a theorem due to Rao (1973, Section 5.e.2). This theorem

 requires that the functions 1(a, j; cl) [a E Aj, j = 1, . . ., J] admit continuous
 first order partials with respect to co at co equal to the true value of co, say c.
 Since Assumptions 1 to 3 do not insure the differentiability of either the value
 function, or of the conditional Markov distributions, they do not insure the
 required condition. As a result, though it is convenient to introduce Proposition

 2 here, its proof depends on the precise specification of both the distribution of

 initial returns and of the Markov process generating subsequent returns-neither

 of which are introduced until the next section.5

 PROPOSITION 2 (proved in Appendix B): Let nj be the total number of patents
 in cohort j, let N = E' I nj, let nj/ N converge in probability to wj as N-> o (j = 1,

 J), and let w*N be the maximum likelihood estimator defined by the equation

 In(CO*N) = SUpe Y IN(@), where Y is a subset of Rk containing coo, the true value of
 CW, in its interior. Then, provided identifiability and invertibility conditions are satisfied

 (see Appendix B), co* converges in probability to coo, and

 _1.1N(&A -t o) -->(0(, [ir,j] ),

 where D reads converges in distribution, r(y, ( ) denotes the multivariate normal
 distribution, [irs] denotes the information matrix calculated in general as

 irS= L Wj E 1 a v(a,]j) dr(a,j)

 j=1 a12AJ X (a,J) a(Or dcXs

 for r, s= 1,..., k, and [i's] denotes this matrix evaluated at co = O.

 Two comments are in order here. First the dimension in which co* converges

 to the true value of c(i.e., cwo) is N, the sum of the number of patents in the J
 cohorts, and as Section 3 shows, N is unusually large in our samples. Second,
 the fact that the 1r(-) functions admit first order partials which are continuous

 at coo, together with the consistency of the maximum likelihood estimator, insures
 that [i*s], the information matrix when evaluated at c = w*, is a consistent
 estimator of [i?j]. As a result, [i*s]-1 is used to estimate the variance-covariance
 matrix of parameter estimates.

 To complete the specification of the model we require a detailed description
 of both the Markov process generating the returns from holding a patent, and
 of the distribution of initial returns. This is provided in the next section. Section
 3 explains the procedure used to obtain the estimates.

 S Indeed the proof of this proposition consists entirely of showing that the is() functions which
 are implicitly defined by the distribution of initial returns, the Markov process, and Proposition 1,
 satisfy this differentiability condition.
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 764 ARIEL PAKES

 2. DETAILS OF THE STOCHASTIC SPECIFICATION

 Equation (7), and the explanation which follows it, describe the Markov process
 assumed to generate the returns from holding a patent. The conditional distribu-

 tion of ra+1 is defined by

 r +1 = with probability exp (- Ora),
 r max {8ra, z} with probability 1 - exp ( - Ora),

 (7) where the density of z, qa(z), is a two-parameter exponential, that is,

 qa(Z) = exp [ - (y+ Z)/(oa]

 and o-a = Oa-lo-, for a = 1,...,L-1.

 One advantage of the process specified in (7) is that it permits an explicit

 solution for the sequence {fa} 1=, as a function of the parameters of the model
 (see below). This process also has the following economic interpretation. At each
 age agents perform experiments designed to enable them to increase the profits
 from their patented ideas. These experiments can have one of three types of
 outcomes. First, they may reveal that the patented ideas can never be profitably
 exploited. This event occurs with probability exp ( - Ora), that is it occurs with
 smaller probability the larger are the current returns from holding the patent;
 and if such an outcome does materialize the agent does not pay a renewal fee
 in the following year (the zero state is an absorbing state in the stochastic process
 generating current returns, which implies that if it is drawn the agent will let the
 patent lapse). The second possible outcome is that the absorbing state does not
 occur, but the experiments do not result in a use for the patented ideas which is
 more profitable than the current one. In this case current returns decay at the
 rate 8 < 1, as steps forward by other agents in the economy gradually make
 obsolete the returns from the agent's own patent, and the agent must decide
 whether current returns, and the possibility of discovering a use which may
 increase those returns in the future, make it worthwhile to pay the next renewal
 fee. Finally, the experiments may actually uncover a use for the patented ideas
 which improves upon the returns which could have been generated with the

 information of the previous year (the absorbing state does not occur and z > Bra).
 The extent of the improvement depends on the precise realization of z. This
 random variable has a two parameter exponential distribution; that is, z has
 probability exp (- y/ o-a) of being greater than zero (experiments do not
 necessarily lead to outcomes which yield positive returns), and has a density
 which declines at the constant rate oJa thereafter. Note that 0(a = ?pa-l. With
 ? - 1 this allows for the possibility that the probability of uncovering a use which

 leads to returns greater than a given number declines over age; or for the possibility
 that agents perform their best experiments first. ? S 1 also suffices for assumption
 A3.4 of the last section.

 We have now defined the stochastic process generating the distribution of (r2,
 r3, .. ., rL) from the distribution of r1. Note that this process is a member of a
 five parameter family, that is og = (0, , o-, 8, 4). To complete the specification
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 PATENTS AS OPTIONS 765

 of the model we require also a distribution of initial returns over different patents.
 It is assumed that initial returns distribute lognormally, or

 (8) log r - Y7(,u, CR).

 This implies that oil = (,u, oJR); so that Ct = (COg, oil) contains seven parameters.
 Equations (7) and (8) complete the specification of the model outlined in the

 first section. Section 3 contains a brief description of how the maximum likelihood

 estimate of -W, that is cv*, was actually obtained. The reader who is not interested
 in the details of the estimation procedure is advised to omit this section and go

 directly to Section 4, which first describes the data, and then analyzes the empirical

 results.

 3. OBTAINING *

 Three technical problems must be solved before we can obtain co*. First a

 method must be provided to calculate the cutoffs, or the sequence {rF}al=, as
 defined in Proposition 1, as a function of c and cv. Given cv, these cutoffs determine

 the drop out probabilities, or the sequence {fr(a)}ja=2 as defined in equation (4),
 which in turn determine the likelihood of c (see equation (6)). The second
 problem, then, is to provide a method which calculates the drop out probabilities

 corresponding to particular values of cv and {aL=l}. Finally, a maximization
 algorithm which finds that value of cv that maximizes the likelihood is required.
 I now consider each of these problems in turn.

 It is possible to develop a recursive system of analytic equations which solves

 for the sequence {i a = r(a; cv, C)}a=2 for our problem. The system is obtained by
 solving for the benefit function in an interval containing ra at each age.6 The
 cutoffs corresponding to particular values of cv and c were obtained by simply
 substituting those values into this system of equations.

 One cannot, to the best of my knowledge, obtain the drop out probabilities as

 analytic functions of cv and {a}L=l . As a result the simulated frequency approach,
 suggested by Lerman and Manski (1981), was used to obtain estimates of these

 probabilities. The simulation estimator of {1r(a)}a=2, say {f7r(a)}a=2, is found by

 6 Briefly, this problem is first reduced to a more manageable one by expressing the function
 determining the benefits from renewal, at each age, as the sum of L- 1 component functions. The
 component functions for age a are definite integrals of the component functions at age a + 1 where

 the limits of integration are determined by the value of r and by the subsequent cutoffs (by fa+7,
 for r = 1, . . ., L-a). This fact leads to a functional recursion which can be solved using Macsyma
 (1983), a computer program designed for symbolic mathematical manipulations, to produce the
 recursive system of analytic equations for {ra}. The continuity of the benefit function together with
 the features of Macsyma enable a check of the Macsyma results for possible programming errors.
 Finally, the solution can be simplified further by noting that the values of the component functions,
 evaluated at Fa, must lie between two simple functions of the parameters of the model. These boundary
 functions become progressively closer together for the later functions at each age and can, therefore,
 be used to form an approximation whose error must lie in an easily calculable range. The functional
 recursion and the boundary functions are developed in Pakes (1984, Appendix 3). The Macsyma
 results were obtained by Andrew Myers and myself.
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 766 ARIEL PAKES

 taking pseudo random draws from the distribution of initial returns defined by

 equation (8) and co1, passing each through the stochastic process defined by

 equation (7) and cg, and calculating the proportion with rai_ >, Fa_ but r, < F,
 for a =2, ... L (see the definition of 1r(a) in equation 4).7 Let NSIM be the
 number of pseudo random draws used to evaluate the simulated frequencies. It

 is well known that 1r(a) converges almost surely, in NSIM, to 1r(a) and has
 variance equal to ir(a)[1-ir(a)]/NSIM (a=2, ..., L). Define the pseudo

 likelihood of cw, say I (w), to equal that value of the likelihood function obtained
 from substituting the simulated for the actual frequencies in equation (6). co*
 was obtained by maximizing I(to) with respect to cw. The information matrix was

 obtained by perturbing each parameter by one per cent from w*, calculating the
 implied derivatives of the simulated frequencies, and substituting these derivatives

 into the formula for the information matrix provided in Proposition 2. The NSIM

 used in the final round of the maximization subroutine was twenty thousand (see

 the next paragraph), and the change from an NSIM of ten thousand, to an NSIM
 of twenty thousand, did not have a perceptible effect on the estimates.

 Evaluating the simulated frequencies at a given value of co is a computer time

 intensive task; the CPU time for a given evaluation is approximately linear in

 NSIM. A maximization subroutine for a problem involving simulated frequencies

 should, therefore, conserve on the number of times it evaluates the likelihood
 function at large NSIM. The subroutine used here varied NSIM within each
 run. It was developed by modifying a program entitled QNMDIF (a quasi Newton
 method for obtaining the maximum of a function of k variables available from

 the National Physics Laboratory (1983); see also Gill, Murray, and Wright (1981)).
 The jth round of the subroutine was defined by an NSIM, say- NSIM(j), and a

 perturbation vector, say Ac = [Aco, ..., AcoJ]. Modifications were made to
 QNMDIF (to both the procedure for finding the gradient vector, and to the
 stepsize search; see footnote 8 for details) which directed it to find, with a
 relatively small number of function evaluations, an co, say coi, such that bJ(cv) )

 I * i c +, J..., ck), for i = 1... k. The j+ 1 round used ci J as a
 starting value, an increased NSIM [NSIM(j + 1) > NSIM(j)], and a perturbation
 vector with smaller components (Acw < <Aw 4; i = 1,..., k). The final two rounds
 used an NSIM of ten and twenty thousand, respectively, and a perturbation

 vector equal to one per cent of the starting value of cv.8
 That completes the description of both the model and the estimation algorithm.

 7The computer program to perform the simulation was designed by Bronwyn Hall and myself,
 and her assistance was, as always, gratefully appreciated.

 8This maximization subroutine was developed by Dvora Ross and myself. There were two
 modifications made to QNMDIF which turned out to be particularly important. First, to find the
 gradient vector for each iteration we used the 2k function evaluations obtained from changing each
 component of the parameter vector by positive and negative values of that component of the
 perturbation vector. If both perturbations with respect to a parameter resulted in function values less
 than the starting value for the iteration, the derivative with respect to that parameter was set equal
 to zero. If not, the derivative was set equal to that implied by the function evaluations. Second, the
 stepsize search was modified so that function values corresponding to small differences in stepsize
 were not calculated. I am grateful to the staff of the Hebrew University computing center for their
 help in allocating computer time to us.
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 The next section describes the data set and then provides the empirical results.

 4. THE EMPIRICAL ANALYSIS

 4.1. The Data

 The data used in this study were obtained directly from the patent offices of
 France, Germany, and the United Kingdom (the U.K.) by Mark Schankerman
 and myself.9 Table I summarizes some of the characteristics of this data.

 Row 1 of the table provides the first age for which a renewal fee is due, or f
 There is no renewal requirement for ages less than f and the renewals at age f
 reflect events that have occurred over the first f ages.10 In the U.K. then, the first
 age at which we have informnation on the drop outs resulting from events that
 have occurred over the previous year is a = 6. Rows 2, 3, and 4 provide, respec-
 tively: the last age at which a patent can be kept in force by payment of a
 mandatory renewal fee (L), the dates of application for the cohorts studied, and
 the years in which renewals are observed."1 In all countries, then, we have at
 least partial information on the renewal behavior of cohorts applied for in most

 TABLE I

 CHARACTERISTICS OF THE DATAa

 Country France U.K. Germany
 Characteristic

 1. f 2 5 3
 2. L 20 16 18
 3. Application dates of cohorts 1951-79 1950-74 1952-72
 4. First/last year in which renewals are observed 1970/81 1955/78 1955/74
 5. Patents studied from cohort: all patents Applied for Applied for Granted
 6. Estimated average ratio of patents granted to .93 .83 .35

 patents applied forb
 7. NPAT= N/J 36,865 37,286 21,273

 a Symbols are defined as follows: f is the first age for which a renewal fee is due; L is the last age at which an agent can keep the
 patent in force by payment of an annual renewal fee; and NPAT is the average number of patents per cohort.
 b For France and the U.K. these estimates were obtained as follows. Let n, be the number of patents applied for in year t, and n,

 be the number of patents granted. Then the ratio was calculated as T-1 ET [(j4_ .25n,+TV)/n]. In Germany the ratio of the patents
 granted to those applied for from a given cohort was directly available, and these ratios were simply averaged over the cohorts studied.

 9 This data set will be described in more detail in a paper we are currently writing. We are indebted
 to the respective patent offices for providing us with the data and graciously answering our subsequent
 queries.

 10 In terms of the model, we have, for a <f, ca = 0, which implies that ra = 0, and that there will
 not be any patents with ra < ra in these ages. On the other hand there may be patents that draw the
 zero state before a =f Since the zero state is absorbing, these patents will not be renewed at a =f
 (see equation (7)).

 " Post World War Germany allowed reapplication of patents previously applied for. By 1952 these
 were less than 1 per cent of German applications, and this explains the choice of 1952 for the starting
 cohort for Germany. The French patent office only provided information on renewals between 1970
 and 1981. Given the values of f and L in France, this implies that the data contain partial information
 on the renewal behavior of cohorts applied for between 1951 and 1979 in that country. In light of
 these facts, I decided to use only post 1950 cohorts for the analysis of the U.K. L was changed to
 20 in 1976 in Germany, and in 1980 in the U.K., and this explains the final renewal years for these
 countries.
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 of the 1950's, throughout the 1960's, and in the early 1970's. The renewal fee
 schedules were obtained in nominal domestic currency, converted to real domestic
 currency using the country's own implicit G.N.P. deflator, and then transferred
 into 1980 U.S. dollars using the official exchange rate in 1980. All monetary
 values are, therefore, in 1980 U.S. dollars.

 Rows 5 and 6 illustrate an important intercountry difference in the characteris-

 tics of the data. In France and the U.K. the data include all the patents applied
 for in the cohorts specified in row 3, but in Germany the data contain only those
 patents granted. Patents granted by date of application were not available for

 France and the U.K., though a rough estimate of the ratio of grants to applications
 in these two countries can be obtained by comparing the number of patents

 applied for to those granted over time (see note b to Table I). This ratio was
 quite large in France (.93), a bit smaller in the U.K. (.83), but only .35 in Germany
 (row 6). Two implications of these facts should be noted. First, when interpreting
 the estimates for France and the U.K. one should keep in mind that one event
 that would lead to a draw of the zero (or absorbing) state in these countries is
 a patentee who is told that his application is not granted (the model will then
 correctly insure that there will be no subsequent returns to patent protection for
 that agent). Second, the twin facts that the data include only patents granted in
 Germany, and that the proportion granted is small in that country, imply that
 the average number of patents per cohort is smaller in Germany (about 21,000)
 than in France or the U.K. (about 37,000). Note also that rows 3 and 7 imply
 that the data contain information on about one million patents in each of France
 and the U.K., and on about half of a million patents in Germany.

 Figure 2 provides the proportion dropping out at each age averaged over the

 cohorts for which the proportion is observed. For "a" not equal to the first or

 last observed cell for the cohort (a f j or Ij + 1), it is these proportions, disaggre-
 gated by cohort, that enter the likelihood function. That is, the estimation
 procedure compares 'the disaggregated proportions to the drop out probabilities

 implied by different values of the model's parameter vector. For a = or Ij + 1,
 the estimation procedure tries to match the total proportion renewed, and the
 averages of these proportions are provided in Figure 4 below. Figure 3 provides
 the mean of the renewal fee schedules used in the analysis.

 Figure 2 makes it clear that there is a distinct difference between the age-path
 of the proportion renewed in Germany, and those in the other two countries. In
 Germany the proportion dropping out is much lower in the early ages, sub-
 sequently overtakes, and then stays larger than the proportion dropping out in

 the other two countries. The lower drop out proportions in the early ages in
 Germany could reflect the success of the German patent office in weeding out
 the patents which have high probabilities of not being profitably developed,
 especially since the renewal fees in the early ages in Germany are relatively small
 and comparable to those in the other countries (see Figure 3). After age five,
 however, these fees are increasing at a much faster pace in Germany, and this
 should, all else equal, generate larger drop out proportions in the later ages in
 Germany.

This content downloaded from 
�������������50.199.227.73 on Sat, 04 Oct 2025 17:05:17 UTC������������� 

All use subject to https://about.jstor.org/terms



 PATENTS AS OPTIONS 769

 0.09

 0.08-

 0.07-

 0.06- /

 z
 o 0.05 /

 O 0.04 / - -

 . 0.03 /

 0.02 /

 0.01-

 0.00 _

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 O FRANCE
 AGE 0 UNITED KINGDOM

 *GERMANY

 FIGURE 2.-Average drop out proportions.a

 aIn terms of the notation of Section 1, for a $ f, the graphs are of the average of n(a,j)/n(j) over all j for which a E Aj, but a 0 fj
 and a?0ll

 1750

 1500-

 1250-

 1000-

 750

 500

 250- 0 O .
 S 0

 fmnrl r T ITrsn "r I T I I ""T ".t ntn ""T nrfrrrT ItnT prr eW In I". I .. 1- nWr v.I MnnDYl r III'$ relan|XnTl rM rt 1. nl fl In" nITfln rinTrrpTrmrrrr

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 AGE ~~* FRANCE
 AGE OUNITED KINGDOM

 *GERMANY

 FIGURE 3.-Average of renewal fee schedules.

This content downloaded from 
�������������50.199.227.73 on Sat, 04 Oct 2025 17:05:17 UTC������������� 

All use subject to https://about.jstor.org/terms
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 Figure 2 also illustrates that there are, in fact, substantial differences in the

 proportion dropping out both between different ages for a given country, and

 between countries for a given age (the drop out proportion for age five in the

 U.K. is not illustrated but equals .305). This understates the total variance in the

 drop out proportions since there is variance between cohorts at a given age in
 each country. Most of this latter variance is concentrated in the early ages. Finally,
 note that in all countries (though to a varying extent) the drop out proportions

 do not decline at as fast a pace in the last few ages as in the ages immediately
 preceding them. This is what we would expect from a stochastic model of renewal
 behavior, since as the age of the patent approaches L, the option value of holding
 the patent goes to zero.

 Turning to Figure 3, note that the average cost-of-renewal schedules are

 nondecreasing in age. This is also true for the renewal fee schedules of each year

 (which justifies the last statement in Assumption 2, Section 1). The renewal fees
 are quite small in all countries in the early years, and increase significantly faster

 in Germany thereafter.

 4.2. The Empirical Results

 Table II provides the parameter estimates, different dimensions of the data,

 and some summary statistics, for each country. It was decided at the outset to

 set the discount factor (,B) equal to .9 in all runs; and the results presented in
 the table are conditional on 3 =.9.12

 The parameter estimates in Germany and France are all positive and highly

 significant. Recall that the dimension in which parameter estimates converge to

 their true values is the total number of patents or NPAT. The extremely large

 values of NPAT (row B.2) explain the relatively low estimated standard errors
 in France and Germany. On the other hand the estimated information matrix for

 the U.K. was singular (see note b to Table II). As will become clear presently,
 this occurs because the estimates imply that in order to distinguish between

 different possible values of the parameter vector we require independent informa-

 tion on events which occur during the early ages; and in the U.K. we do not

 have such information until age 6. As a result I pay little attention to the U.K.

 estimates in what follows.13
 To get an indication of the fit of the model, the difference between the estimated

 and actual ii's was squared and averaged over the NCHRTAGE (row B.4)
 distinct cohort-age cells for which these proportions are observed. The resulting

 numbers appear as MSE[r] in row C.1 of the table. Comparing them to the

 variance in the actual XT's (i.e., to V[XT; data] in row C.3), it is clear that in France

 12 The decision to fix /3, and a related decision to do only one run per country, served to save on
 computer time. The CPU time for each run increases more than proportionately to the number of
 parameters estimated.

 13 On the whole the estimates presented in the table for the U.K. have implications which are very
 similar to those that will be described for the French estimates. It should also be noted that the
 maximization algorithm had much more difficulty in converging for the run on the U.K. data.
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 and Germany only a small fraction of the variance in the actual i's is not
 accounted for by the model (1.4 per cent in France, and .6 per cent in Germany;
 in the U.K. this fraction is a somewhat larger 6.4 per cent). To see whether there
 was any indication of cohort specific differences in the fit of the model, the
 differences between the estimated and actual P's were also used to calculate a
 pseudo Durbin-Watson statistic for each country (see note d to Table II). These
 are provided in row C.2 of the table, and seem to distribute about two. I return
 to further comments on the fit of the model after a brief description of some of
 the implications of the parameter estimates, particularly those related to the
 characteristics of the learning process.

 The parameters whose estimates exhibit large intercountry differences are U,

 oR, and o-. The estimates of u and CR imply that a substantial fraction of the
 patents in the French data started out with low, almost negligible, initial returns;

 TABLE II

 PARAMETER ESTIMATESa

 Country

 France U.K." Germany

 A. Parameter

 o- 5689 (8.24) 5467 (6.09) 7460 (19.72)
 y 9162 (13.67) 6919 (10.29) 8687 (17.09)

 .5084 (5.66 x 10-4) .4383 (2.17 x 10-3) .4896 (1.16 x 10-3)
 8 .8475 (2.62 x 10-4) .8102 (1.81 x 10-3) .8861 (2.48 x 10-4)
 O'R 1.579 (2.92 X 10-3) 1.525 (3.04 X 10-3) 1. 158 (2.36 X 10-3)
 A 4.705 (2.75 x 10-3) 5.425 (2.55 x 10-3) 6.718 (3.70 x 10-3)
 o .0990 (6.36 x 10-) .36b .0855 (2.46 x 10-)

 B. Dimensionc

 B.1. NPAT 1,069,095 983,471 446,741
 B.2. NSIM 20,000 20,000 20,000
 B.3. Age:f/L 2/20 5/16 3/18
 B.4. NCHRT 29 26 21
 B.5. NCHRTAGE 238 272 237

 C. Summary Statisticd
 C.1. MSE[ir] 5.42 x 10-4 6.91 x 10-4 1.48 x 10-4
 C.2. PDW[ i] 1.65 2.24 1.85
 C.3. V[*; data] 3.90 x 10-2 1.07 x 10-2 2.65 x 10-2

 a Patents are assigned to cohorts by year of application. Numbers in parenthesis beside parameter estimates are their estimated
 standard errors.

 b Letting [i*,] be the estimated information matrix, then, for the U.K., i* = 0. The standard errors of this column were obtained
 by inverting a six by six matrix consisting of i*5 for r, s $ 6. They are, therefore, conditional on 6 = 6*.

 See also the notes to Table I. NPAT is the total number of patents covered by the data. NSIM is the number of random draws
 used to evaluate the simulated frequencies in the final iteration of the maximization subroutine and in the estimation of the information
 matrix (see Section 3). NCHRT is the number of cohorts covered by the data. NCHRTAGE is the number of cohort-age cells covered
 by the data.

 d Let e be the difference between the estimated and the actual r(a, j) for aeA., j=1, ..., J. Then MSE [ir]=
 (NCHRTAGE)-1 Y_ J_ e2az' and

 j=1 Y- c"A

 0-l ,,=*;al,j dala is (1thle sml aai o (a ()+

 V[4r'; data] is the sample variance of 4r(a, j).
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 while the higher mean and the lower coefficient of variation in Germany imply
 that this phenomena was not nearly as pronounced among German patents (the
 mode of the estimated distribution of initial returns is under ten dollars in France

 but is over two hundred dollars in Germany; and the parameter estimates indicated
 that about thirty per cent of the French patents had initial returns under fifty

 dollars, while under one per cent of the German patents do). The larger a in
 Germany implies that, on average, the holders of the patents included in the

 German data had a higher probability of discovering uses which increased the

 returns to their patented ideas. Recall that the German data include only patents
 granted while the French data include all patents applied for; and that the
 granting criteria seem to be particularly stringent in Germany (Table I). It seems,
 then, that the German patent office was, on the whole, successful in weeding out

 patents with low initial returns and a smaller probability of increasing those

 returns over time.

 The estimates of 0, 8, 4, and y do not vary much between the two countries.
 The low estimates of 4 (about .5) imply that the learning process is concentrated
 in the early ages. Table III illustrates this point. The descriptive statistics provided

 in this and in subsequent tables were obtained from a simulation run of 20,000

 draws based on the mean of the renewal fee schedules and the parameter estimates

 of Table II. Consider first the column of figures for France. The mean of the

 initial distribution of returns was 380 dollars. During the initial year just under

 twenty per cent of the French patent holders discovered a use which enabled

 TABLE III

 THE EVOLUTION OF IMPLICIT REVENUES IN THE EARLY AGESa

 Country

 France Germany

 Characteristic

 E(ri)[r lI rl > 0] 380.43 1608.57
 Pr (Downside); Pr (Upside) .0637; .1807 .0004; .2705
 ir(2) .0637 (no required renewal)
 E(r2)[r21 r2> 0] 1414.72 3400.98
 Pr (Downside); Pr (Upside) .0387; .0331 .0006; .0584
 ir(3) .0907 .0013
 E(r3)[r3 |r3 > 0] 1432.24 3224.56
 Pr (Downside); Pr (Upside) .0118; .0012 .0005; .0039
 ir(4) .0792 .0121
 E(r4)[r41 r4 > 0] 1339.05 2899.41
 Pr (Downside); Pr (Upside) .0048; 0.00 .0003; 0.0
 ir(5) .0381 .0277
 E (rs[r5l r5 >?] 1192.70 2641.40
 NPAT 36,865 21,273

 a The estimates in this and the following tables were obtained from a simulation run of 20.000 draws using the
 estimates of w given in Table II and the mean of the renewal fee schedules. Pr (Downside) is the average probability
 of discovering that the patented ideas will never by profitably exploited (of drawing the absorbing state), averaged
 over the patents still in force. Pr (Upside) is the average probability of discovering a use which enables the agent

 to increase returns in the following year (of z > Sr,), averaged over the patents still in force. EJrjI r> 0] is the mean
 of r for patents still in force. ir(a) is the proportion of patents which drop out at the ath renewal.
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 them to increase subsequent returns, while over six per cent discovered that their
 patented ideas could never be profitably exploited. These six per cent were the
 only patents whose renewal fees were not paid in the second year. The holders
 of the remaining patents paid the renewal fee and maintained the option of patent
 protection on the results of the second year's experiments. The large learning
 probabilities in the first year caused a sharp increase in the average returns of
 the patents still in force in the second year. During the second year much less
 learning occurred than occurred during the first year. An additional nine per cent
 of the patent holders stopped paying the renewal fee at the third age. Of these,
 about five per cent were owned by agents who, after doing experiments for two
 years, had decided that it was not worthwhile to pay the renewal fee in order to
 have the option of patent protection on the results of subsequent experiments.
 Average learning probabilities decreased further over the next two ages. They
 were just about sufficient to keep the mean of the current returns earned on the
 patents still in force constant. There was essentially no learning after the fifth
 age, and the effect of the obsolescence process clearly dominates the learning
 processes when comparing the means of the patents still in force in the fifth, to
 those still in force in the fourth, ages. The major qualitative difference between
 the German and the French columns in this table arises from the fact, noted
 earlier, that the German parameter estimates imply that a much smaller proportion
 of the patents in the German data started out with negligible returns. As a result
 most of the patents included in the German data were known to be worth
 something at the outset, and more of the German patent holders who did not
 discover a more profitable use over time had current returns which induced them
 to pay the renewal fee until the ages in which those fees started rising sharply
 (which was after age five; see Figure 3).

 I now return briefly to the issue of the fit of the model. Figure 4 provides the
 proportion renewed, by age, averaged over the cohorts for which this proportion
 was observed. The thick lines provide the proportions in the data, the thin lines
 those estimated by our model, and, for comparison, we also provide the propor-
 tions estimated from a deterministic model (the broken lines). The deterministic
 model is a model in which patents are endowed with an initial distribution of
 returns which decay deterministically thereafter. It is obtained by changing the
 probability statement in equation (7) to read: ra+i = bra, with probability one.14
 In this figure it is hard to distinguish the curve estimated by the stochastic model
 from the data. On the other hand the deterministic model predicts too few renewals
 in the early ages (i.e., too many drop outs), too many renewals in the middle
 ages, and too few again in the later ages. Recall that the renewal fees are close
 to constant over the initial ages. As a result, the deterministic model cannot
 accommodate both the small number of drop outs in the initial age, and the
 sharp increase in the number of drop outs over the next few ages. This point is

 14 As one would expect from the large size of our samples (NPAT) the likelihood ratio test statistic
 for the null hypothesis that the model was deterministic was inordinately large (over 20,000 for
 Germany and over 60,000 for France; see also note 15). More informative is the fact that the MSE(3r)
 statistics for the deterministic model were about twice their values for the stochastic model.
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 magnified in Figure 5 which provides the proportion dropping out, by age,
 averaged over the cohorts for which this proportion is observed. The stochastic

 model accounts for the combination of the low initial drop outs and the increase

 in the number of drop outs over the next few ages by estimates which imply that

 the option value of patents which start out with low returns is initially high, but

 then declines rather rapidly. As will be shown presently, this model accounts for
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 the spread of those who do drop out over the later ages by a somewhat skewed

 distribution of initial returns, and, more importantly, by a learning process which
 increases the skew in the distribution of returns substantially over the next few
 ages.

 In Figure 5 we can actually see the differences between the estimates from the
 stochastic model and the data. These differences are concentrated in the middle
 ages. The age-specific average drop out proportions in the French data have two
 local maxima (at ages three and seven). The estimates from the model for France
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 FIGURE 5-Comparisons of average drop out proportions.
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 776 ARIEL PAKES

 also have two local maxima (and at the same ages), but the model's estimates

 of these maxima are somewhat too high, and its estimate of the trough between

 them is too low. In Germany the data provide a rather flat age distributon of

 average drop out proportions between ages eight and eleven. The model's esti-

 mates replace this with two local maxima and a minimum, though neither the

 maxima nor the minimum are nearly as pronounced as those estimated for the

 earlier ages in France. In addition, the model's estimates of the average drop out

 proportions in the later ages are a bit too high in France, and a bit too low in

 Germany. In sum, though Figures 4 and 5 indicate why the mean square error
 of the differences between the observed and estimated proportions are small
 relative to V(I3; data), they also indicate that the model is not perfectly specified,
 and this should be kept in mind when considering the implications of the

 parameter estimates.15
 Table IV provides a summary of the distribution of returns at ages one, three,

 and five respectively. Two implications of this table are of interest. First there is
 a distinct pattern to the evolution of these distribution functions over age. Between

 ages one and three the upper tail of the distribution becomes thicker and is

 pushed to the right. That is, a substantial fraction of the patentees who had the
 "upside draws" in Table III uncovered uses for their patented ideas which

 increased the returns earned from holding their patents by large amounts. A

 comparison of the quantiles for age five to those of age three reveals the onset

 of the obsolescence process; that is, the quantiles from the age five distribution

 are always below the same quantiles from the distribution at age three. The

 second point to note is that there is a skew in the initial distribution of returns,

 TABLE IVa

 THE DISTRIBUTION OF RETURNS IN THE EARLY AGES [F(r, a)]

 Country France Germany

 r/a 1 3 5 1 3 5

 0 0 .155 .270 0 .001 .04
 50 .31 .315 .375 .01 .01 .04
 150 .580 .525 .585 .07 .065 .095

 500 .830 .710 .745 .34 .27 .325

 2,500 .975 .86 .895 .83 .655 .705
 5,000 .990 .925 .950 .940 .800 .845
 15,000 .995 .990 .990 .990 .95 .97

 a See the note to Table III.

 15 Given the values of NSIM and NPAT for our problem (see Table I) the binomial sampling
 error in both the empirical and estimated frequencies have variances very close to zero. As a result
 even our, relatively small, sample values of MSE(i) are too large for sampling variance to be the
 only source of error in the model. Though this problem, which is called the problem of extra-binomial
 sampling variance by Williams (1982) (see also the review in Haseman and Kupper (1979) and the
 discussion in Heckman and Singer (1984)), occurs frequently in models designed to analyze propor-
 tions when the underlying sample size is large, I do not know of any consistent way of accounting
 for it when the model has a sequential dimension.
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 and that this skew increases substantially over the first few ages. This fact leads

 to a highly skewed distribution of realized patent values.

 Table V provides percentiles and Lorenz curve coefficients from the distribution

 of realized patent values, where the realized value of a patent is defined as the

 discounted sum of net returns (current returns minus renewal fees) from age one

 to the last age the given patent is kept in force. Again I begin by considering the

 column of figures for France. Twenty-five per cent of the patents in the French

 data had realized values of seventy-five dollars or less.'6 These patents contributed
 about a half of one per cent to the total value of the patents in a cohort, while

 the patents in the lower half of the distribution contributed less than two per

 cent of the total value of a cohort. The median of the distribution of realized

 values ($534) was less than one tenth its mean ($5,631); and the five per cent of
 the distribution with the highest realized values contribute about half of the total

 value of a cohort. The German distribution of realized values was somewhat less

 skewed than the distribution in France, though even the German distribution

 was extremely skewed. The difference between the two distributions was, as might

 have been expected from the fact that in Germany the data refer to grants rather
 than applications, most pronounced at the lowest percentiles. In Germany these

 percentiles were nonnegligible, albeit, quite small. Still only about 7 per cent of

 the patents in Germany had realized values in excess of $50,000; in France only

 TABLE V

 PERCENTILES (pl) AND LORENZ CURVE COEFFICIENTS (1c) FROM THE DISTRIBUTION OF
 REALIZED PATENT VALUESa

 Country

 France U.K. Germaniy

 Per cent

 p pl($) Ic pI($) Ic pI($) Ic
 per cent per cent per cent

 .25 75.23 .544 355.55 .554 1,999.60 2.249
 .50 533.96 1.833 1,516.84 3.247 6,252.93 7.341
 .75 3,731.35 8.087 7,947.55 16.369 19,576.26 25.288
 .85 10,292.06 19.575 15,357.09 31.721 32,428.14 41.001
 .90 17,423.11 31.261 22,206.21 44.257 44,241.87 52.672
 .95 31,609.59 52.461 34,740.07 62.960 65,753.61 69.223
 .97 42,905.78 65.514 43,889.95 73.640 78,299.01 78.348
 .98 51,215.84 73.729 51,277.22 80.072 94,842.63 83.800
 .99 66,515.40 84.011 65,075.08 87.858 118,354.78 90.330

 maximum 259,829.27 374,028.70 - 419,217.55
 mean 5,631.03 7,357.05 16,169.48 -
 NPAT 36,865 37,826 21,273

 'The realized value for patent i is Y___ 6 l r- )(r,, -c,), where T* is the last age at which patent i was kept in force. See also the
 note to Table III.

 16 Of course some of these patents had negative (though small in absolute value) realized values,
 as they were patents on which early renewals were paid for options which did not materialize. If,
 for example, we had defined the realized values as the discounted sum of net returns from age two,
 rather than from age one (as in the table), the Lorenz curve coefficient corresponding to p = .25 would
 have been negative, though close to zero.
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 two and a half per cent had values this large. Given the size of the cohorts this

 implies that, on average, about a thousand patents which had realized values in

 excess of $50,000 were applied for annually in France, and about fifteen hundred

 such patents were granted annually in Germany.

 One other point is worthy of note here. The estimate of the ratio of the average

 realized value in a cohort of patents applied for in France, to that value in a

 cohort of patents granted in Germany, is .35-which is just equal to the average

 of the ratios of grants to applications in the German cohorts (see Table I). The

 estimates seem to imply, then, that the mean of the realized values of the patents

 applied for in the two countries was similar. On the other hand, there were a

 significantly larger number of patents applied for per year in Germany than in

 France (about 60,780 in Germany, versus 36,865 in France). On average, then,
 the total value of a cohort of patents in Germany was larger than the value of a

 French cohort.

 4.3. The Value of Patent Protection and the Characteristics of the Patenting Process

 A word of caution is in order before proceeding. Though it may well be the

 case that the patent renewal data are the most extensive and detailed information
 source on the value of patent protection available, they, in themselves, contain
 only a limited amount of information: the age path of the proportion of patents
 in different groups paying a renewal fee and the renewal fee schedules. Mixing

 this information with additional assumptions has lead to a set of quite detailed

 conclusions, but it should be clear that these may depend on the additional

 assumptions chosen (both behavioral and stochastic). The only exogenous check
 of these conclusions I have considered is a broad check of the implications of
 the parameter estimates against known intercountry differences in the data. In

 this section I consider more general implications of the parameter estimates.
 Though here it will be possible to provide rough checks for the consistency of

 some of the conclusions we derive with alternative sources of information, it

 should be kept in mind that there may be many models that do as well as ours

 in all these respects (as well as in fit), but differ substantially in others.

 To get an indication of the annual returns earned from holding the patent

 stock in a country, we must account for the fact that the patent stock held at a

 given point in time consists of the patents from the cohorts applied for over the

 previous L years which are still in force at that time. Assuming that each of the

 previous L cohorts began with the average number of patents per cohort and

 faced the mean of the renewal fee schedules, and using the parameter estimates
 of Table II, we find that the net annual flow of returns from holding the patent
 stocks in France, the U.K., and Germany were .315, .385, and .512 billion dollars,

 respectively. To consider whether these figures imply large gains from patenting

 we would like to compare them to either the total returns that accrued to the
 patented ideas, or to the expenditures that went into developing them. Neither
 of these two numbers are available, but the OECD (1975; Tables III and IV)
 does provide estimates of the R&D expenditures funded by the business enter-

This content downloaded from 
�������������50.199.227.73 on Sat, 04 Oct 2025 17:05:17 UTC������������� 

All use subject to https://about.jstor.org/terms



 PATENTS AS OPTIONS 779

 prises in these countries in 1963 (which is the midcohort in our data). The

 estimates of the annual returns from holding the patent stocks were respectively,
 15.56 per cent, 11.03 per cent, and 13.83 per cent of the R&D expenditures of
 the business enterprises in France, the U.K., and Germany; and the sum of these
 returns across countries was 13.14 per cent of the sum of their R&D expenditures.
 Since there may be returns earned as a result of patenting per se, regardless of
 whether the patents were ever renewed, and since our estimates only pertain to
 the returns earned by renewing (or holding) patents already in force, the
 numerator of this ratio may slightly understate the annual monetary value of the
 incentives created by the patent system. Moreover, the ratio suffers from the fact
 that we have not netted out various balance of trade effects.17 Still, the ratio does
 suggest that the proprietary rights resulting from the patent laws create annual
 returns which are nonnegligible in comparison to privately funded R&D activity.

 The returns earned from holding patents may, of course, be only a small
 fraction of the returns that accrue to patented ideas. Nevertheless the general

 similarity between the shape of the estimated distributions of the value of holding

 patents on the one hand (see Table V), and currently available evidence on the
 distribution of the values of patented ideas on the other, is quite striking. In

 particular the evidence available from disaggregated case studies indicates an
 extremely skewed distribution of the values of patented ideas (see Sanders,
 Rossman, and Harris (1958); and Gabrowski and Vernon (1983)). Scherer (1958,
 p. 1098), for example, notes that the data provided in Sanders, Rossman, and
 Harris suggest a Pareto-Levy distribution with an infinite mean for the distribution

 of profits from patented ideas; while Garbrowski and Vernon summarize their
 studies on the profitability of new pharmaceutical entities with the statement:
 "In effect, these results indicate that pharmaceutical firms are heavily dependent

 on obtaining an occasional "big winner" to cover their R&D costs and generate
 profits" (Gabrowski and Vernon, 1983, p. 11). Larger sample econometric studies
 have focused on the relationship between the number of patents applied for and
 alternative measures of the outputs and the inputs into inventive activity (see the
 articles in Griliches (1984)). Pakes (1985) provides a detailed time-series cross-
 section analysis of the reduced form relationship between patent applications,
 R&D expenditures, and changes in the stock market value of firms, that allows

 for dynamic error components to intercede between these variables. That article
 concludes that changes in the number of patents applied for by firms are a very

 noisy measure of the changes in stock market value of their R&D related output,
 but that, on average, increases in patent applications are associated with large
 increases in the firm's value, just what we would expect from a highly skewed

 distribution of the value of patented ideas. In addition, a strong simultaneous

 relationship between the factors driving R&D expenditures and those driving

 patents was found, suggesting that a significant search for uses and improvements

 to the patented ideas continues during the early years of a patent's life.

 17 Business enterprises in these countries also own patents in force elsewhere, and foreign business
 enterprises own patents in force in these countries. Moreover, not all the business sector's R&D
 expenditures are directed towards patentable innovations, and not all patentees are business enter-
 prises.
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 There is an explanation of the patenting process which is at least consistent
 with both the empirical results found in this paper, and with those cited above.
 Patents are applied for at an early stage in the inventive process, a stage in which
 there is still substantial uncertainty concerning both the returns that will be earned
 from holding the patents, and the returns that will accrue to the patented ideas.
 Gradually the patentors uncover the true value of their patents. Most turn out

 to be of little value, but the rare "winner" justifies the) investments that were

 made in developing them. If this explanation captures the nature of the patenting
 process we would not expect to find a very stable relationship between profits
 and current and past patents, or between profits and the current and past R&D

 expenditures which lead to them, except possibly for very large aggregates. For
 individual economic units we would expect most increases in patents not to lead

 to any increase in profits, and for there to be an occasional jump in profits which
 is not necessarily preceded by any increase in patenting. Growth through discovery
 will occur in spurts, and these spurts will be probabilistically related to the
 investments which preceded them. Traditional production function approaches
 to obtaining estimates of either the rate of return to the investments which
 produced the patents, or the determinants of the quantity of resources invested
 in their development, are not likely to be very precise. Nor will they provide

 much evidence on the characteristics of the distribution of possible outcomes,

 features of the problem that are likely to be particularly important in analyzing
 the rich set of issues determining the evolution of firm and industry structure.
 An alternative, pointed out by Nelson and Winter (1982), and Telser (1982), is
 to be more careful in the econometric modelling of the inventive process itself,
 employing, perhaps, controlled search processes in which investment expen-
 ditures affect the distribution of possible outcomes.18

 One final point: Disaggregated patent renewal data, data which enable an
 investigation of the returns to patent protection by technical field of the patent

 and by nationality and type of patentor (e.g. individuals, small business enter-
 prises, large corporate entities), is gathered by INPADOC (International Patent
 Documentation Center, Vienna, Austria). These data should prove extremely
 valuable. Issues related to which sectors of a particular economy, and which
 economies, derive disproportionate benefits from the patent laws lie at the heart
 of most discussions of the cost and benefits of alternative patent systems (see
 Scherer (1965, Chapter 16), and the literature cited there). Moreover, intersectoral
 differences in the patenting and R&D processes are central to the literature on
 market structures, industrial policy, and technical progress.

 National Bureau of Economic Research, Cambridge, MA 02138, U.S.A

 Manuscript received May, 1984, revision received November, 1985.

 APPENDIX A

 This appendix proves the following lemma.

 LEMMA 1: The value of the option, that is, E[ V(a + 1) I r, a], is: (i) continuous and nondecreasing
 in r, and (ii) nonincreasing in a (re R+, a = 1, . . ., L).

 18 A step in this direction has been made by Ericson and Pakes (1983).
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 PROOF: The proofs of both (i) and (ii) are obtained by backward induction on "a", and use the
 following lemma (for a proof, see Ross (1983, p. 154)). Let f(z) be nondecreasing in z and
 Pr{zs- kl z,}'< Pr{zs kl zl} for all k E R. Then, provided E[f(z) I zl]<oo, E[f(z) I zj]-E[f(z)l z ]
 (for nonincreasing f( * ), E[f(z) I z] G E [f(z) I z']).

 Part (i). Since E[ V(L+ 1) I r] = 0 for all r, the initial condition of the inductive argument is satisfied
 trivially, and it suffices to show that if the proposition is true for a = T+ 1, it is also true for a = r.
 Recall that V(T + 1, Z) = max {0, z - c,+1 + PE[ V(T + 2)1 z, T + 1]}, and note that since the hypothesis
 of the inductive argument implies that E[ V(T+2)1 Z, T+ 1] is continuous and nondecreasing in z,
 V(T+1, z) is also.

 To establish continuity take any r E R+. E[ V(Q + 1) r, T] will be continuous at r if for every
 sequence {rn} such that lim rn = r (or r- 3 r), E [V(T+ 1) I r", T] - E[ V(T+ 1) I r, T] (Royden (1968,
 p. 48). For any such sequence, let V,(T+ 1) be the random variable V(T+ 1, z) with distribution
 G(zI r, T) (V(T+ 1) has distribution G(z r, T)). Since A3.2 implies that G(zI rn, T) converges in
 distribution to G(z I r, T), and V(T+ 1, z) is continuous in z, the distribution of V (T+ 1) converges
 to that of V(T+1) (Billingsley (1979, Theorem 25.7)). This fact will insure that E[V(T+l)lr,
 T] - E[ V(T+ 1)1 r, T], if there exists an E>0 for which E[ V(T+ 1)]1+E j r,, T] <0 for all n (Billingsley
 (1979, Theorem 25.12 and its corollary)). Note also that since r was arbitrary, if we show that
 E[V(T+1)]l+6Irn, T]<0, then E[V(a+l)lr, a] is continuous in r for all reR+(a=1, ..., L).

 Now

 [L-? \ 1+e -
 E[Vn(T+1)l+6]1s<E - 7+j) r 2. -n] <2? E E[rl+s1r.=rn]

 \j=1 /=

 (Rao, 1973, p. 149). Since Assumption A3.1 insures that there exists an E > 0 such that E[ ri+j I r = rn] <
 00, it will suffice to show that E[r+] I r, = r,] E[rl+?' I r, = rn], for all n and j = 1, . L-1.

 For this we require only that

 Gt,j(k I rn)-Pr {k 2 r+j |r = rn} 2 Pr {k 2 r,+j I r, = rn} Gl,j(kI rn)

 for all k, j = 1, . . , L- T, and rn E R+. A second inductive argument proves this point. Since Assumption
 A3.4 insures the inequality for j = 1, it will suffice to show that if the inequality is true for j =j', it
 is also true for j = j'+ 1. Now

 Pr {k 2 r,+J,+l I r = rn}

 = I G(k z, T + j) G-,j,(dz rn )

 2=J G(k z, 1 +j')G7,i,(dz1 rn)

 21 G(k z, 1+j')Gl,,j(dzrn))= Pr{k -r2+j1rl = rn}

 where the first inequality follows from A3.4, and the second from the hypothesis of the inductive

 argument and the Lemma since G(k Iz, 1 +j') is nonincreasing in z (from A3.3) and bounded by 1.
 To establish that E[ V(T+ 1) Ir, T] is nondecreasing in r apply the Lemma directly and note that:

 V(T +1, z) is nondecreasing in z (from the hypothesis of the inductive argument); G(z r, T) <
 G(z I r', T) whenever r2 r' (from A3.3); and V(T+ 1, z) is integrable with respect to G(zl r, T) (from
 the argument given above). Q.E.D.

 Part (ii). For the first step of the inductive argument I assume that E[ V(a +2)1 r, a + 1 ]
 E[V(a+l)lr, a] and show that this implies that E[V(a+l)lr, a]'<aE[V(a)jr, a-1] for
 rER,. Recall that V(a+1, z)=max{0, z-c.+i+ pE[V(a+2)Iz, a+1]} s max{0, z-c,,+
 f3E[ V(a + 1) I z, a]}= V(a, z), where the inequality follows from the hypothesis of the inductive
 argument and the fact that Ca+i 2 Ca (see A2). Therefore, for any r E R,

 E[ V(a + 1) I r, a]=J V(a + 1, z) G(dz I r, a) J V(a, z) G(dz I r, a)

 s| V(a, z)G(dzIr, a-1)= E[V(a)I r, a-1],

 where the last inequality follows from the Lemma, since V(a, z) is nondecreasing in z and integrable
 with respect to G(zIr, a-1) (see above), and G(zIr, a)--G(zIr, a-1) from Assumption A3.4.
 To establish the initial condition for the inductive argument it suffices to note that
 E[V(L+l)lr, L]=<4cL (z-cL)G(dzIr, L-1)=E[V(L)ji, L-1]. Q.E.D.
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 APPENDIX B. PROPOSITION 2

 Proposition 2, which provides properties of the maximum likelihood estimator, follows directly
 from a theorem due to Rao (1973, Section 5.e.2) provided the following regulatory conditions are
 satisfied:

 (i) The functions 7r(a, j; c)(a =2, ..., L; j=1, .. J) admit first order partials which are
 continuous at w = ?.

 (ii) For every co e Y such that $ w0, ir(a, j; c) $ r(a, j; wo) for at least one couple (a, j)
 (a = 2. L,j=l, . .L , J).

 (iii) The information matrix, [irs], is nonsingular at a> = ?.
 Since neither the conditional Markov distributions nor the function determining the benefits from

 renewing are differentiable everywhere, it is not immediately obvious that condition (i) is satisfied
 in our problem, and a formal proof of this condition is given below.19 Given this proof, I simply
 assume (ii) and (iii). They will be satisfied provided there is sufficient variation in the cost schedules
 and ages covered by the data.

 PROOF OF CONDITION (i): Omitting the index j for simplicity we have, from equation (5) in the
 text,

 7T(a; co) = F(Ia(W), a; cv) - F(fa.l(W), a-1; Ct),

 where F(*, a) and F(,a) provide the distribution of returns and the cutoff at age a respectively (a = 2,
 L). Lemma B.1 below shows that Fr(w) is continuously differentiable in cv at Ct = cv(a = 2,.

 L). It therefore suffices to prove that F(r, a) is both continuously differentiable with respect to cv at
 = ?0 in an interval containing r = rF,,(c(0), and has a density which is continuous at r= i (c0)(a = 1,

 L; recall that F(Fl, 1) 0). Lemma B.2 proves a condition which suffices for this point.
 Q.E.D.

 LEMMA B.1 Each element of the sequence of functions {Ia(cv')}&.=. admits first partials which are
 continuous at &v = v.

 PROOF: The proof is by backwards induction on "a". Since rLL cL, the initial condition of the
 inductive argument is satisfied trivially, and it suffices to show that Fa(c) admits continuous first
 partials with respect to w at c = wo provided the Ia+T(W)[ = 1, 2, . L -a] do. Proposition 1 and
 equation (7) imply that Faf ( ) is defined by the implicit function

 I.(Ia, cv) = a+ 13 -exp (- OFa)] JI 0 V(a + 1, z; w)Q(dz, a; cv)-ca = 0.

 Clearly u (*) possesses a continuous, strictly positive, partial derivative with respect to F, The implicit
 function theorem therefore implies the lemma provided g (*) admits continuous first partials with
 respect to w at cv = wo. The hypothesis of the inductive argument implies that Fa+i(w) has continuous
 first partials; and Q(z, a; w) is an exponential distribution which has a density which possesses
 continuous first partials with respect to c everywhere for z e R,. It will, therefore, suffice to show
 that V(a + 1, z; w) has continuous first partials with respect to c at WO = w0 for every z E (Fa+l, oo),
 except possibly a set of z of Lebesgue measure zero, provided that Fa+,(w) [for T = 1, . . . L - a] have
 continuous first partials at cv = cwo. A second inductive argument suffices to prove this point.

 Since V(L, z) = max {0, z - cL} the initial condition for the inductive argument is satisfied trivially
 and it will suffice to show that V(a +1, z) has the required property provided that V(a + 2, z) does.
 Equations (7) and (2) imply that

 19 The following two points help to explain why condition (i) can be satisfied despite the nondifferen-
 tiability of r + /EE[ V(a + 1)1 r, a] and G(z r, a). First, the direct dependence of 7r(a) on the benefit
 function is through the fact that the cutoff, Ia, is defined as the unique solution to r + ,fE[ V(a + 1) 1 r,
 a] = ca, and for our problem it is possible to show that r + 8E[ V(a + 1) I r, a] is differentiable in r in
 a region about ia (a = 2, . . ., L). Second, though conditional on any value of r, G(z I r, a) has points
 at which it is not differentiable in z; there does not exist a value of z C R+ which is a discontinuity
 point for a set of r of positive Lebesgue measure; as a result, the unconditional distributions of
 returns, that is F(-, a), is differentiable (see below).
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 v'(a + 1, z) = z - ca+ +13[I -exp (-Oz)]j V(a +2, s)Q(ds, a + 1),
 ra2

 V(a + 1, z)= if Z E [Fa+, 8rFa+2];
 v2(a+ 1, z) = z-ca++1[1 -exp (- Oz)]{Q(8z, a+ 1) V(a+2, z)

 + V(a+2, s)Q(ds, a+1)}, if Z (8 Fa+2, x))-

 The argument of the last paragraph together with the hypothesis of the inductive argument implies

 that v1(a + 1, z) has continuous first partials with respect to t at t = o' for every z E [Fa+,(co0), oo).
 For z e (8-Fa+2, oo) the values of z at which v2(a+1, z) has discontinuous first partials are the
 values of z at which V(a +2, 8z) has the same property. Now, for r = 1 or 2, let S(a + r) be the set

 of z E (Fa+,(O0), oo) at which V(a + ,r z) has discontinuous first partials with respect to co at w = co.
 Then

 m[S(a + 1)] 3 m[S(a + 2)] + m[Fa+23-i1 = m[S(a + 2)] = 0,

 where m[*] provides the Lebesgue measure of alternative sets, and the last equality follows from the
 hypothesis of the inductive argument. Q.E.D.

 LEMMA B.2: F(r, a) has a density which is both continuous in r and admits continuous first partials

 with respect to co at C = wo for every r E: [Ia(Co0) - ci, ac) and some, E > 0 (a = 2, .. ., L).

 PROOF: The proof is by forward induction on "a". First assume F(-, a -1) has a density with
 the required properties and denote that density by f( *, a - 1). Choosing 0 < -- < Fa(Co) - 80a-1(Co0)
 (that such an E exists follows from the facts that F;a 3 Fa- and 80< 1), Proposition 1 and equation
 (7) imply that for any re[Fa(Co0)- -, Xc)

 (L2.1) Pr{r > raFa-E}=j Pr{r > ra iFa-E I z}f(z, a-1) dz

 where

 (L2.2) PrIr>ra a Fa-eZ}I f[1 -exp(- oz)]Q(r, a-i) if 81raz> ra-1,
 0 ~~~~~~if z > V1r;

 and Q(, a -1) denotes an exponential distribution. Substituting we have

 '-r

 (L2.3) Pr{r> ra 3 Fa-E} = Q(r, a-1) [1 -exp (-Oz)Vf(z, a-1) dz.

 For any r in the required interval the density, f(r, a), can be derived by direct differentiation of
 (L2.3). The fact that it is continuous in r and possesses continuous first partials with respect to C at
 co = Co follows from the same properties of: the exponential distribution and its density, of f(z, a -1)
 for all Z E [ia -, oo) (which follows from the hypothesis of the inductive argument), and from the
 continuity of the first partials of Fa-I with respect to C at C = Co (Lemma B.1).

 To complete the inductive argument we need only show that F(-, 2) has a density with the required
 properties. This can be shown by substituting a = 2 in the argument given above and noting that
 F(r, 1) is the lognormal distribution which has both a continuous density and continuous first partials

 with respect to Co for all r E R,. Q.E.D.
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