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Econometrica, Vol. 55, No. S (September, 1987), 999-1033

OPTIMAL REPLACEMENT OF GMC BUS ENGINES:
AN EMPIRICAL MODEL OF HAROLD ZURCHER

By Joun RusTt'

This paper formulates a simple regenerative optimal stopping model of bus engine
replacement to describe the behavior of Harold Zurcher, superintendent of maintenance
at the Madison (Wisconsin) Metropolitan Bus Company. The null hypothesis is that
Zurcher’s decisions on bus engine replacement coincide with an optimal stopping rule: a
strategy which specifies whether or not to replace the current bus engine each period as a
function of observed and unobserved state variables. The optimal stopping rule is the
solution to a stochastic dynamic programming problem that formalizes the trade-off between
the conflicting objectives of minimizing maintenance costs versus minimizing unexpected
engine failures. The model depends on unknown “primitive parameters” which specify
Zurcher’s expectations of the future values of the state variables, the expected costs of
regular bus maintenance, and his perceptions of the customer goodwill costs of unexpected
failures. Using ten years of monthly data on bus mileage and engine replacements for a
subsample of 104 buses in the company fleet, I estimate these primitive parameters and
test whether Zurcher’s behavior is consistent with the model. Admittedly, few people are
likely to take particular interest in Harold Zurcher and bus engine replacement per se. |
focus on a specific individual and capital good because it provides a simple, concrete
framework to illustrate two ideas: (i) a “bottom-up’” approach for modelling replacement
investment, and (ii) a “‘nested fixed point’ algorithm for estimating dynamic programming
models of discrete choice.

KEYWORDSs: Optimal replacement, regenerative optimal stopping models, dynamic
programming, controlled stochastic processes, nested fixed point algorithm.

1. INTRODUCTION

THIS PAPER FORMULATES a simple regenerative optimal stopping model of bus
engine replacement to describe the behavior of Harold Zurcher, superintendent
of maintenance at the Madison (Wisconsin) Metropolitan Bus Company. The
null hypothesis is that Zurcher’s decisions on bus engine replacement coincide
with an optimal stopping rule: a strategy which specifies whether or not to replace
the current bus engine each period as a function of observed and unobserved
state variables. The optimal stopping rule is the solution to a stochastic dynamic
programming problem that formalizes the trade-off between the conflicting objec-
tives of minimizing maintenance costs versus minimizing unexpected engine
failures. The model depends on unknown ‘“‘primitive parameters” which specify
Zurcher’s expectations of the future values of the state variables, the expected
costs of regular bus maintenance, and his perceptions of the customer goodwill
costs of unexpected failures. Using ten years of monthly data on bus mileage
and engine replacements for a subsample of 104 buses in the company fleet, 1
estimate these primitive parameters and test whether Zurcher’s behavior is con-
sistent with the model.

! This research was made possible by financial support from the Graduate School of the University
of Wisconsin and National Science Foundation Grant SES-8419570. I thank Alice Wilcox for an
excellent job typing the manuscript and Tom Rust for his careful work in coding the data. I am
especially grateful to Harold Zurcher for providing the data used in this study, and for his assistance
in interpreting the estimation results.
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1000 JOHN RUST

Admittedly, few people are likely to take particular interest in Harold Zurcher
and bus engine replacement, per se. I focus on a particular individual and a
specific capital good because it provides a simple, concrete framework to illustrate
two ideas: (i) a “‘bottom-up” approach for modelling replacement investment
and (ii) a “‘nested fixed point” algorithm for estimating dynamic programming
models of discrete choice.

The “bottom-up” approach uses a micro-theoretic model to derive aggregate
replacement investment from individual optimizing behavior. Most existing
econometric models use a ‘‘top down’ approach to derive replacement investi-
ment. This approach, often identified with the work of Jorgenson (1973), requires
a measure of a hypothetical continuous aggregate capital stock K, and computes
replacement investment using variations of Wicksell’s (1934) original proportional
decay specification 8K. The limitations of the approach are well known; see, for
example, the critique by Feldstein and Rothschild (1974). The bottom-up
approach, on the other hand, generates replacement investment by explicitly
aggregating individual replacement demands for specific capital goods, including
bus engines.” The seemingly continuous demand for replacement investment at
the aggregate level is actually the sum of a large number of binary-valued
stochastic processes {i,}, where i, = 1 if a replacement occurs at time ¢ and i, =0
otherwise. Taken to its logical extreme, the bottom-up approach requires us to
begin our investigation at the level of individual capital goods, and even individual
decision-makers, including Harold Zurcher.® The idea is to use economic theory
to “‘explain” the joint stochastic process {i,, x,}, where x, denotes observed state
variables associated with the replacement investment decision. I model {i,, x,} as
a regenerative stochastic process, where a regeneration corresponds to replacing
an existing used asset with a new one. Under the hypothesis of expected discoun-
ted profit maximization, {i,, x,} is also a controlled stochastic process generated
from the solution to a dynamic programming problem. The unknown parameters
of this stochastic process will generally be a complicated, nonlinear function of
the ‘“primitive parameters’” of the model, namely, the parameters of the
individual’s (or firm’s) objective (profit) function, and the parameters of the
stochastic processes governing observed (and unobserved) state variables.
Unfortunately, since the controlled process {i,, x,} is the solution to a discrete

2 The bottom-up approach has also been applied to study new investment; a good example is
Peck's (1974) model of investment in new electric generators.

* Of course, given current limitations on data and computational capacity, I do not pretend that
the bottom-up approach can offer a practical approach for forecasting aggregate replacement invest-
ment for the forseeable future. However, to the extent that the approach offers an alternative theory
of aggregate replacement investment, I thought it would be best to test its validity by constructing a
narrower, but more precise model! at the level of a single individual and single capital good. This
way | avoid the econometric problems of aggregation bias (such as the use of aggregate capital stock
measures), and heterogeneity bias that plague studies that use aggregate time-series and disaggregate
cross-sectional data. By using nonexperimental data | also avoid problems encountered in laboratory
tests of choice under uncertainty: lack of incentives and insufficient time to learn. Harold Zurcher,
a professional with over 20 years experience in bus maintenance at Madison Metro, has had plenty
of time to learn. Furthermore, to the extent Zurcher values his job at Madison Metro, the incentives
for behaving rationally ought to be quite high.
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AN EMPIRICAL MODEL OF HAROLD ZURCHER 1001

stochastic control problem, one will rarely find a closed-form solution for its
probability density or any sort of **first order condition’ convenient for estimation.
In general the solution can only be described recursively using Bellman’s principle
of optimality. The second objective of this paper is to illustrate a new estimation
method that allows me to compute maximum likelihood estimates of the primitive
parameters of a class of controlled stochastic processes, even though there is no
analytic formula for the associated likelihood function.

The analysis begins in Section 3 where I derive a regenerative optimal stopping
model of bus engine replacement which does have a simple analytic solution.
The model shows how one derives the sample likelihood function
€y, ..., ir,X,,...,Xr; 0) for the regenerative process {i,, x,} as the solution to
a regenerative optimal stopping problem.* I argue, however, that models with
closed-form solutions have certain inherent limitations which make them poor
candidates for empirical work and discuss the deficiencies of the analytic model
of replacement investment. In Section 4 I describe a nested fixed point maximum
likelihood algorithm which does not require a closed-form solution to the stochas-
tic control problem, avoiding many of the limitations of current methods which
depend critically on the existence of an analytic solution. In Section 5 I generalize
the model of Section 3, removing restrictive assumptions about functional forms
and incorporating unobserved state variables. The regenerative stochastic process
{i,, x,} derived from the solution to this more general model has no closed-form
solution, but can be estimated using the nested fixed point algorithm described
in Section 4. Using this algorithm, I compute maximum likelihood estimates of
the primitive parameters of the model. I conclude in Section 6 by deriving the
implied demand curve for replacement investment by aggregating over the
individual regenerative processes {i,, x,}.

2. THE DATA

Before 1 prejudice you with a theoretical model, it’s useful to give a simple
description of the data. Harold Zurcher was kind enough to provide me with
maintenance records on 162 buses in the fleet of Madison Metro over the period
December, 1974 (or date of purchase for buses purchased after 12/74) until May,
1985. The data consist of monthly observations on the mileage (odometer reading)
on each bus, plus a maintenance diary which records the date, mileage, and list
of components repaired or replaced each time a bus visits the company shop.

* There is a vast literature in operations research on optimal maintenance and replacement of
stochastically deteriorating assets (see, for example, the surveys by Pierskalla and Voelker (1976)
and Sherif and Smith (1981)). By and large the focus of this literature is normative: starting from
specific assumptions about the objective function and the stochastic process governing deterioration,
one derives an optimal replacement strategy from the solution to a stochastic control problem. This
paper can be viewed as solving the “inverse™ problem: given observations on a sequence of asset
states and replacement decisions, | go backwards and infer the objective function and the stochastic
process governing deterioration whose associated optimal replacement strategy coincides with the
observed data.
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1002 JOHN RUST

TABLE 1
Bus TyYPES INCLUDED IN SAMPLE

Number Estimated

Bus of Empty Purchase Value as
Group Buses  Manufacturer Engine Model Year  Seats Weight Price of 10/1/84
1 15 Grumman V6-92 series 870 1983 48 25800 $145,097 $145,097
2 4 Chance 3208 CAT RT-50 1981 10* N.A. 100,775 124,772
3 48 GMC 8V71 T8H203 1979 45 25,027 92,668 125,000
4 37 GMC 8V71 5308A 1975 53 20,955 62,506 55,000
5 12 GMC 8V71 S308A 1974 S3 20,955 49975 48,000
6 10 GMC 6V71 4523A 1974 45 19,274 45,704 48,000
7 18 GMC 8V71 S308A 1972 51 20,955 43,856 45,000
8 18 GMC 6V71 4523A 1972 45 19,274 40,542 40,000

Note All buses are diesel powered and have air conditioning
* Handicap bus, outfitted with 4 long benches and accommodations for 6 wheelchairs

Maintenance operations fall into three categories: (i) routine, periodic mainten-
ance (examples are brake adjustments and tire rotation), (ii) replacement or
repair of individual components at time of failure, and (iii) major engine overhaul
and/or replacement. This study focuses on the third component of maintenance
investment, which can be regarded as part of a general *‘preventive maintenance”
strategy in the following sense. The bus engine can be viewed as a portfolio of
individual components each of which has its own individual stochastic failure
or “‘hazard” rate as a function of accumulated use (as measured by the bus
odometer). If a particular component fails when a bus has relatively low mileage,
then it seems reasonable to simply replace or repair the failed component and
put the bus back on the road. However when a particular component fails on a
bus with relatively high mileage, then to the extent that one wants to minimize
unexpected failures it seems reasonable to expect that other components will fail
in the near future, so it might make sense to replace the entire engine with a
“new” engine freshly rebuilt in the company machine shop (Zurcher claims that
rebuilt engines are every bit as good, if not better, than engines purchased brand
new). Under the maintained hypothesis'that this preventive maintenance strategy
is optimal, I focus on constructing a model which predicts the time and mileage
at which engine replacement occurs.

Table I1a summarizes the replacement data for the subsample of buses which
had at least one engine replacement. On average, bus engines were replaced after
S years with over 200,000 elapsed miles. Data for the full sample are also
summarized visually in Figure 1, which shows considerable variation in the time
and mileage at which replacement occurs. Looking across the different bus groups,
we notice large differences in the mean age and mileage at replacement, although
itis difficult to tell whether these differences are significant given the large standard
deviations and small numbers of observations. A statistical problem with the
simple tabulation in Table Ila is that although the use of complete spells avoids
bias due to censoring, it fails to account for possible selection bias. Table 11b
looks at the subsample of buses for which no replacements occurred. These data
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AN EMPIRICAL MODEL OF HAROLD ZURCHER 1003

TABLE lla
SUMMARY OF REPLACEMENT DATA
(Subsample of buses for which at least 1 replacement occurred)

Mileage at Replacement flapsed Time (Months)

Bus Standard Standard Number of
Group Max Min Mean Deviation Max Min Mean Deviation Observations

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 273,400 124,800 199,733 37,459 74 38 59.1 10.9 27

4 387,300 121,300 257,336 65,477 116 28 73.7 233 33

5 322,500 118,000 245,291 60,258 127 31 854 29.7 11

6 237,200 82,400 150,786 61,007 127 49 74.7 35.2 7

7 331,800 121,000 208,963 48,981 104 41 68.3 16.9 27

8 297,500 132,000 186,700 43,956 104 36 58.4 22.2 19

Full
Sample 387,400 83,400 216,354 60,475 127 28 68.1 224 124

are right censored since we do not observe the final age and mileage at which
replacement occurs. We can see from Table 11b that despite the right censoring,
both the mean elapsed age and mileage are significantly higher for this subsample.
The data for bus groups 7 and 8 are also left censored since these buses were
acquired in 1972 and my data begin in December, 1974. The presence of these
biases makes it difficult to summarize the unconditional population distribution
of the age and mileage at replacement. The empirical analysis in Section 5
implicitly accounts for censored spells through the use of a conditional likelihood
function given the observed sample of data. 1 account for selection bias by
allowing for heterogeneity in parameter estimates across bus groups.

The empirical analysis in Section 5 focuses on a subsample of the full data
set, bus groups 1-4. The buses in these groups were the most recent acquisitions

TABLE IIb
CENSORED DATA
(Subsample of buses for which no replacements occurred)

Mileage at May 1. 1985 tlapsed Time (months)

Bus Standard Standard  Number of
Group Max Min Mean Deviation Max Min Mean Deviation  Observations

1 120,151 65,643 100,117 12,929 25 25 25 0 15

2 161,748 142,009 151,183 8,530 49 49 49 0 4

3 280,802 199,626 250,766 21,325 75 75 75 0 21

4 352,450 310910 337,222 17,802 118 117 117.8 0.45 5

5 326,843 326,843 326,843 0 130 130 130 0 1

6 299,040 232,395 265,264 33,332 130 128 129.3 1.15 3

7 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0

Full
Sample 352,450 65,643 207,782 85,208 130 25 66.4 346 49
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1004 JOHN RUST

Bus Replacement Data: Full Sample
+ =replace (124 obs), - =keep (162 obs)
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FIGURE 1

at Madison Metro, the main “workhorses” on the company’s most active bus
routes. I focus on this subsample for two reasons: (a) data on actual engine
replacement costs were available for these groups, (b) utilization, summarized
by the monthly mileage distributions for each bus, is fairly homogeneous within
each of the four groups. Since the estimation procedure allows for heterogeneity
between groups, but does not account for differences in buses within each group,
I wanted to minimize the possible heterogeneity bias by selecting bus groups
which appeared to be most homogeneous. Estimates of discretized monthly
mileage given in Table VI in Section 5 show that we cannot reject the hypothesis
that the monthly mileage distributions for the individual buses within each of
these groups are identical. On the other hand the older 1972 and 1974 GMC
buses in groups 5-8 have been utilized less intensively since the acquisition of
the new GMC model 203 buses in 1979. The fixed effects regression results in
Table VII of Section 5 (see equation (5.6)) show that monthly mileage for the
newer groups 1-3 is significantly higher, by 308 miles. The policy of putting older
buses “out to pasture” on charter assignments and low mileage routes suggests
that a simple replace/no replace model which treats utilization as exogenous is
not strictly correct. Less intense utilization is an obvious substitute for more
frequent maintenance. Older buses can also be kept in inventory as back-ups or
“spares”, providing another substitution possibility. Although utilization and
replacement are best viewed as jointly endogenous decisions in a comprehensive
maintenance policy, I decided that since a joint model is substantially more
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AN EMPIRICAL MODEL OF HAROLD ZURCHER 1005

TABLE 111

AVERAGE ENGINE REPLACEMENT COSTS"

Bus Group
Operation 1,2,3 4 1,2,3,4
Labor time® to drop engine $ 150 $ 150 $ 150
Labor time® to overhaul engine 3373 2870 3032
Parts required to overhaul engine 5826 4343 4730
Labor time" to re-install engine 150 150 150
Total cost of replacement $9499 $7513 $8062

“ Based on 1985 repl nt cost data supplied by Harold Zurcher.
P Includes fringe benefits.

complex, and since these rather subtle interrelationships would be difficult to
identify given my limited sample, it would be best to focus on the simplest model
capable of explaining the major features of the data.

Table III shows the average engine replacement costs for bus groups 1 to 4.
These data will be used in Section 5 to identify additional parameters of an
expected cost function which specifies Zurcher’s perceptions of the combined
costs of monthly maintenance and lost customer goodwill due to unexpected
breakdowns. Notice that total replacement costs for the newer buses (groups 1,
2, 3) is about 25 per cent higher than the older 1975 GMC buses. Despite these
higher replacement costs we can see from Table Ila that engine replacements for
the newer buses occur on average 57,600 miles and 14.6 months earlier than for
the older 1975 GMC buses. Presumably the operating and maintenance costs for
the newer buses must increase faster than for the older buses in group 4 in order
to warrant this behavior.

3. OPTIMAL REPLACEMENT OF BUS ENGINES

My objective is to explain the bus data by deriving a regenerative stochastic
process {i,, x,} with an associated likelihood function £(i,, ..., ir, x;,..., xr; 6)
formed from the solution to a particular regenerative optimal stepping problem.

Let the state variable x, denote the accumulated mileage (since last replacement)
on the bus engine at time ¢ and suppose that expected per period operating costs
are given by an increasing, differentiable function of x,, ¢(x,, 8,). Operating costs
are the sum of maintenance, fuel, and insurance costs (which are potentially
observable), plus Zurcher’s estimate of the costs of lost ridership and goodwill
due to unexpected breakdowns. The latter costs are generally not directly observ-
able, so I attempt to infer them by postulating a total cost function c(-, 6,) and
estimating 6,. The function ¢ can be decomposed as follows:

(3.1 c(x, 8,)=m(x, 6,,)+pun(x, 6,,)b(x, 6,5)

where m(x, 6,,) is the conditional expectation of normal maintenance and operat-
ing expenses, wu(x, 8,,) is the conditional probability of an unexpected engine

This content downloaded from
50.199.227.73 on Sat, 04 Oct 2025 17:08:08 UTC
All use subject to https://about.jstor.org/terms



1006 JOHN RUST

failure, and b(x, 6,5) is the conditional expectation of towing costs, repair costs,
and the perceived dollar cost of lost customer goodwill in the event of an
unexpected engine failure. Given actual maintenance and operating cost data,
one could directly estimate m by nonlinear regression. Unfortunately I do not
have these data, nor do I have data on the occurrence of unexpected breakdowns,
so I am unable to separately identify the functions m, u, and b. Therefore the
best I can do is to specify and estimate their sum, c.

Suppose that the mileage travelled each month by a given bus is exponentially
distributed with parameter 6,, independently of mileage driven in previous
periods. Each month, Zurcher faces the discrete decision: (i) perform ‘“normal
maintenance” on the current bus engine and incur operating costs c(x,, 6,), or
(ii) “cannibalize” the old bus engine for scrap value P, install a new (or rebuilt)
bus engine at cost P, and incur operating costs c(0, 8,). I assume that Zurcher
chooses an optimal replacement policy to minimize the expected discounted costs
of maintaining his fleet of buses. Let i, denote Zurcher’s replacement decision
at time ¢, i, =0 (keep), i,=1 (replace). It follows that the stochastic process
governing {i,, x,} is the solution to the following regenerative optimal stopping

problem:
9
where the utility function u is given by

—c(x,, 01) if i, =0,
—[P-P+c(0,0,)] if i =1,

o0

(3.2) Vo(x,) =sup E{ > Bj_'u(xj,fj, 6,)
I

Jj=t

(33) u(xh ih 01) = {

and where 11 is an infinite sequence of decision rules I ={f,, f,+,, ...} where each
J: specifies Zurcher’s replacement decision at time ¢ as a function of the entire
history of the process, i, =f,(x,, i,_1, X,_1, I;_2, X,_2, ...) and the expectation in
(3.2) is taken with respect to the controlled stochastic process {x,} whose probabil-
ity distribution is defined from II and the transition probability p(x,.|x,, i, 6,).
The utility function (3.3) shows why I call the model a regenerative optimal
stopping model of engine replacement: once the bus engine is replaced the system
“regenerates” to state x, = 0. This regeneration property is formally defined by
the stochastic process governing the evolution of {x,} given by the transition
probability p(x,.|x,, i,, 8;) below:

0, exp{0,(x,+1—x)} if =0 and x.,,=x,
(34)  p(Xps1| X, ir, 02) =4 05 exp {0(x,41)} if ii=1 and x.,>0,
0 otherwise.

According to (3.4) if the decision is made to keep the current bus engine (i, =0),
then next period accumulated mileage x, ,, is given by a draw from the exponential
distribution 1 —exp {0,(x,.; — x,)}. However if the decision is made to replace the
bus engine (i, =1), then x, regenerates to state 0 and next period accumulated
mileage x,., is a draw from the exponential distribution 1—exp {6,(x,;, —0)}.

This content downloaded from
50.199.227.73 on Sat, 04 Oct 2025 17:08:08 UTC
All use subject to https://about.jstor.org/terms



AN EMPIRICAL MODEL OF HAROLD ZURCHER 1007

The function V4(x,) defined in (3.2) is the value function and is the unique
solution to Bellman’s equation given by’

(3'5) Ve(xl)='_1;rlca(§)[u(xl, iI’ 01)+BEV9(X,, lt)]
where C(x,)={0, 1} and where the function EVy(x,, i,) is defined by
(36) Evﬂ(xl, it) = J Ve()’)l’(dJ’|x:, ila 02)-

0

Using Bellman’s equation, I have shown elsewhere (Rust, (1986a)) that there is
an optimal stationary, Markovian replacement policy IT=(f, f...) where f is
given by

1 if xt> 7(01, 02)’

3.7) i:=f(xu0)={0 if x,<1vy(6,,0,)

where y(0,, 0,) is the unique solution to

v(6,,6,)

(38) (P-P)1-B)= L [1-B exp{=6,(1-B)y} ac(y, 6,)/dy dy.
The constant y represents a threshold value of mileage (optimal stopping barrier)
such that whenever current mileage on the bus x; exceeds v it is optimal to incur
the replacement costs RC = (P — P) and replace the old bus engine with a new one.

The likelihood function €(i,,..., iy, X,,..., X1, 0) specifies the conditional
probability density of observing the sequence of states and replacement decisions
for a single bus in periods 1 to T. Under the assumption that monthly mileage
and replacement decisions are independently distributed across buses, the likeli-
hood function L(8) for the full sample of data is simply the product of the
individual bus likelihoods ¢. The precise functional form of this likelihood
function can be easily derived from the optimal stopping rule (3.7) and (3.8)
using the regeneration property, the fact that the distribution of monthly mileage
is exponential, and the easily proven result that the distribution of the optimal
stopping time (i.e. the first passage time from x = 0 to the optimal stopping barrier
v) is Poisson with parameter 6,y. This structural model has two key features
which distinguish it from traditional reduced-form models of replacement invest-
ment: (i) the parametric specification occurs at the level of the primitive objects
of the model, namely, the utility function u(x,, t;, 8,) and the transition probability
p(X,41]%,, i,, 8,), (ii) the sample likelihood function is not specified directly, but
rather is derived from the solution to the underlying optimization problem. Thus,
£ is simply the probability density of the controlled stochastic process {i,, x}.

Although this simple model leads directly to a convenient, analytic formula
for the likelihood function, I have serious reservations about using it for empirical

> A good reference on dynamic programming and stochastic control which derives Bellman’s
equation is Bertsekas (1976).
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1008 JOHN RUST

work. The solution for the likelihood function depends critically on specific
choice of functional form: namely, that monthly mileage (x,.; —x,) has an i.i.d.
exponential distribution. Unfortunately, my sample of data flatly refutes this
assumption: the exponential distribution constrains the mean and standard devi-
ation of monthly mileage to be equal, whereas the data show that the standard
deviation is less than one third of mean monthly mileage. If I try to use a more
realistic mileage distribution (such as the log-normal distribution which has
separate parameters for mean and variance), I can no longer obtain an explicit
solution for the stochastic control problem (3.2) and the associated likelihood
function.® Perhaps even more restrictive is the basic model formulation which
assumes that the physical state of a bus is completely described by a single
variable, accumulated mileage x,. This formulation implies a degenerate hazard
function for bus engine replacement: the probability of replacing a bus engine
is 0 in the interval (0, y) and 1 thereafter. Looking back at the replacement data
summarized in Figure 1 we can see that there is clear evidence against the
hypothesis of a single fixed optimal stopping barrier y: mileage at replacement
varies from a minimum of 82,400 to a maximum of 387,300. This variation is too
large to be consistent with a threshold replacement rule. More realistically, we
might assume that the odometer value x, might be only one indicator of the
physical state of the bus, and Harold Zurcher might base his replacement decisions
on other information ¢, which we have not observed. Unfortunately, my attempts
to formulate a more realistic model which included such unobserved state variables
lead to models which had no analytical solution.

The problem of statistical degeneracy caused by a failure to account for
unobserved state variables is not unique to this model; it is a problem common
to the majority of models in decision theory. A basic result in Markovian decision
theory (cf. Blackwell (1968)) shows that under quite general conditions the
solution to the class of infinite horizon Markovian decision problems takes the
general form

(3.9)  i=f(x,0)

where f is some deterministic function relating the agent’s state variables x, to
his optimal action i,. Suppose we assume that there are no unobserved state
variables, i.e. that the econometrician observes all of x,. The theory then implies
that the data obey the deterministic relation (3.9) for some unknown parameter
value 6*. However in general, real data will never exactly obey (3.9) for any
value of the parameter 0: the data contradict the underlying optimization model.
The typical solution to this problem is to ‘““add an error term” g, in order to
reconcile the difference between f(x,, #) and the observed choice i

(3.10) i, =f(x,,0)+¢,.

© The solution requires computation of the fixed point Vj, to the functional equation (3.4) and
computing the optimal stopping boundary vy, by solving the nonlinear equation V,(v,)=

P—P+V,(0).
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AN EMPIRICAL MODEL OF HAROLD ZURCHER 1009

By making a convenient distributional assumption for &,, one might use the model
(3.10) to estimate 6. The difficulty with this procedure is that it is internally
inconsistent: the structural model was formulated on the hypothesis that the
agent’s behavior is described by the solution of a dynamic optimization problem,
yet the statistical implementation of that model implies that the agent randomly
departs from this optimal solution. If error terms ¢, are to be introduced to a
structural model in an internally consistent fashion, they must be explicitly
incorporated into the solution of the dynamic optimization problem. When this
is done, a correct interpretation of the *“‘error term” ¢, is that it is an unobservable,
a state variable which is observed by the agent but not by the statistician.”

4. STRUCTURAL ESTIMATION WITHOUT CLOSED-FORM SOLUTIONS

Rust (1987) has developed a maximum likelihood estimation algorithm for a
class of dynamic discrete choice models which (i) does not require closed-form
solutions for the agent’s stochastic control problem and associated likelihood
function, and (ii) treats unobservables ¢, in an internally consistent fashion by
explicitly incorporating them into the formulation and solution of the model.
Although the algorithm can estimate a considerably wider class of models than
the regenerative processes considered here, the basic notation for the general
case is no more complicated, so I present the general notation below:

C(x,): Choice set; a finite set of allowable values of the
control variable i, when state variable is x,.
g, ={e(i)]ie C(x)}: A # C(x,)-dimensional vector of state variables

observed by agent but not by the econometrician.
g,(i) is interpreted as a component of utility of an
alternative i in time period ¢ which is known by
the agent but not by the econometrician.

x, ={x,(1),..., x(K)}: K -dimensional vector of state variables observed
by both the agent and the econometrician.
u(x,, i, 0,)+¢&,(i): Realized single-period utility of decision i when

state variable is (x,, &,). 0, is a vector of unknown
parameters to be estimated.

P(Xis1s €041| %05 €1, 01, 02, 83):  Markov transition density for state variable (x,, €,)
when alternative i, is selected. 6, and 6; are vectors
of unknown parameters to be estimated.

0=(B, 6,, 06, 0,): The complete (1+ K, + K,+ K;) vector of para-
meters to be estimated.

Given the stochastic evolution of the state variables (x,, £,) embodied by the
transition probability p, the agent must choose a sequence of decision rules or

7 Besides increased realism, the addition of unobservable state variables offers another benefit:
additional parameters can be estimated. The rigid specification of the replacement model without
unobservables condenses all information about replacement behavior into the single constant y. As
a result, at most 1 cost function parameter 6, is identifiable in this model (see equation (3.8)). Addition
of unobservables produces a model which can be consistent with a wide variety of shapes for the
implied replacement hazard function, enabling us to identify more cost function parameters, as well
as the replacement cost parameter RC and possibly the discount factor g.
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1010 JOHN RUST

controls f,(x,, ¢, 0) to maximize expected discounted utility over an infinite
horizon. Define the value function V, by

(4'1) Vﬂ(xl, 8’) =Sl}le E{ Z B(j~t)[u('x:j',ﬁ, 01)+ Ej(ﬁ)],xl’ €y 02, 03}
j=t

where II ={f,, fix1, fix2,-- .}, fi € C(x,) for all #, and where the expectation is

taken with respect to the controlled stochastic process {x,, ¢,} whose probability

density is defined from IT and the transition probability p by

(4'2) dp{xl+1 ) 8l+1’ RREY xt+N, 8!+N |xt, 8,}
N-1
= [l p(xi+1, £i+1,xi’ &, [i(Xi, &), 05, 605).
i=t

Problem (4.1) is known as an infinite-horizon, discounted Markovian decision
problem. Under certain regularity assumptions described in Rust (1987) the
solution to this problem is given by a stationary decision rule

(4.3) i, =f(x, &, 0)

which specifies the agent’s optimal decision when the state variables are (x,, g,).
The optimal value function Vj is the unique solution to Bellman’s equation given
by

(4.4) Vo(xi, €)= ,n}?:x) [u(x, i, 0,)+ e,(i)+BEV9(x,, £, 1)]

where

(4'5) EVo(x,, €y I)E J J Vﬂ(ya W)P(dy, d”? |xl, &y, i’ 02’ 03)

y n

and the optimal control f is defined by
(46)  f(x, &, 0)=argmax [u(x, i 6,)+ &,(i) + BEV(%,, &, )],

As it stands, there are two difficulties which hamper direct econometric
implementation of the model i, = f(x,, &, 6) given by the solution to (4.4) and
(4.6). First, many commonly chosen distributions for the unobservable g, will be
continuously distributed with unbounded support. However, this raises serious
dimensionality problems since the optimal stationary policy f will ordinarily be
computed by solving for the fixed point V, from Bellman’s equation. Even taking
a rough grid approximation to the true continuous distribution of g,, the
dimensionality of the resulting finite approximation will still be too large to be
computationally tractable. Secondly, since ¢, appears nonlinearly in the unknown
function EV,, we face the additional problem of integrating out over the ¢,
distribution to obtain choice probabilities. Since EV, is an unknown function,
this will require the dual task of integrating V, with respect to a finite grid
approximation of the density p(x,.1, £.4.|X,, &, i, 6>, 8;) to obtain EV,, and then
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AN EMPIRICAL MODEL OF HAROLD ZURCHER 1011

numerically integrating Bellman’s equation (4.4) to obtain the conditional choice
probability P(i,|x,, 8). The following assumption (number (A6) in Rust (1987))
enables us to circumvent these problems.

CoNDITIONAL INDEPENDENCE AssUMPTION (CI): The transition density of the
controlled process {x,, ,} factors as

(4.7) P(Xi1s €11 txr, £, 1, 05, 05) = q(&,4, !x:+1 s 02)P(xt+1|xn i, 65).

Assumption (CI) involves two restrictions. First, x,,, is a sufficient statistic for
€,+1, which implies that any statistical dependence between ¢, and ¢, is transmit-
ted entirely through the vector x,.,. Second, the probability density of x,,
depends only on x, and not ¢,. Intuitively, the {g,} process can be regarded as
noise superimposed on the underlying {x,} process, since in each period ¢, ¢, is
drawn according to the density (e, |x,, 8,) given the realized value of x,. Admit-
tedly, (CI) is a strong assumption.® The payoft is twofold. First, (CI) implies that
EVj, is not a function of ¢,, so that required choice probabilities will not require
integration over the unknown function EV,. Second, (CI) implies that EV, is a
fixed point of a separate contraction mapping on the reduced state space I' =
{(x,i)|x€ R¥, ie C(x)}, eliminating the need to compute the fixed point V, on
the much larger full state space S ={(x, £)|xe R¥, ¢ e R*“} and avoiding the
numerical integration required to obtain EV, from V,. These results are summar-
ized in the following theorem proven in Rust (1987).

THEOREM 1: Assume that (CI) holds. Let P(i|x, 8) denote the conditional
probability of choosing action i€ C(x) given state variable x. Let G([u(x, 6,)+
BEV,y(x)]|x, 6,) denote the social surplus function corresponding to the density
q(e|x, 8,), defined by

(4.8)  G([u(x, 6,)+BEV,(x)]|x, 6,)

= Lgngg) [u(x, ) 1)+ BEVs(x, j)1q(de |x, 0,).

Then P(i|x, 8) is given by
(49)  P(ilx, 6)=G([u(x, 6,)+BEV,(x)]|x, 6,)

where G; denotes the partial derivative of G with respect to u(x, i, 6,) and the
Sfunction EVy is the unique fixed point to a contraction mapping Ty, To(EV,) = EVy,
defined for each (x,i)eI by

(410) EVe(x, i) =J G([“(}’, 91)+3EV9()’)]|J’, 02)P(dJ’Ix, la 03)

y

81 present a specification test for (CI) in Section 5.
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1012 JOHN RUST

The significance of Theorem 1 is that the conditional choice probabilities
P(i|x, 8) can be computed using the same formulas used in the static case witk
the addition of the term BEV,(x, i) to the usual static utility term u(x, i, 8,)
Notice that McFadden’s (1973), (1981), static model of discrete choice appears
as a special case of Theorem 1 when p(-|x, i, ;) is independent of i. In that case
the expected utilities EVy(x, i) are also independent of i which implies that G
is a function of {u(x,j,8)|je C(x)} alone. This implies that P(i|x, 8)=
G:(u(x, 8)|x, 6,) can be interpreted at the usual static choice probability. The
intuition behind this result is clear; when p(-|x, i, 85) is independent of i, current
choices do not affect the evolution of the state variables {x,, ,} and so have nc
future consequences. Therefore, it is optimal to behave myopically each perioc
and choose the alternative i which maximizes single period utility u(x,, i, 8,)+
£,(i). When current choices do have future consequences, the term BEV,(x, i,
provides the appropriate “shadow price” for the future consequences of each
action and must be added to the current utility in order to correctly describe the
optimal behavior of the agent. Specific functional forms for q(e|y, 8,) yield more
concrete formulas for the choice probability P(i|x, #) and the contraction map-
ping T,. For example, if q(e|y, 6,) is given by a multivariate extreme value
distribution )

(411)  q(elx, 6,)= Tl exp{-e(j)+6:}exp {—exp {—e(j)+6:}}

jeC(x)
6,=vy=0.577216,
then the social surplus function G is given by
(4.12)  G([u(x, 6,)+BEVy(x)]|x, 62)
= ln { CZ‘( ) exp [u(xaja 01)+BEV8(X’J)]},
jeC(x

P(i|x, 8) is given by the well-known multinomial logit formula

exp {u(xa i, 01)+,BEV9(X, i)}
Y exp{u(x,j, 0,)+BEV(x,j)Y

jeC(x)

(4.13)  P(i|x, 0)=

and EVj, is given by the unique solution to the functional equation

(4.14)  EV,(x, i)=J log{, ;( )exp[u(y,j, 01)+BEVa(y,j)]}p(dy|x, i, 03).
y JjeC(y

We now are in position to state exactly how the structural parameters of the
controlled process {i,, x,} can be estimated. Given time series observations
{(io, Xo), (iy,x1),...,(ir, x1)} for a single individual we form the likelihood
function & (iy, x,, ..., ir, Xr|io, X0, 8) and estimate the unknown parameters 6
by the method of maximum likelihood. The following theorem of Rust (1987)
shows that under Assumption (CI) this likelihood function has an especially
simple form.
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AN EMPIRICAL MODEL OF HAROLD ZURCHER 1013
THEOREM 2: Under Assumption (CI) the likelihood function ¢ is given by
T
(4'15) Zf(xly ceey xT7 ila LR iT|x09 iO’ 0) = H P(il |x1, 0)p(xt Ixr—la it—l’ 03),
t=1

where P(i,|x,, ) is given by (4.9).

Formula (4.15) shows how previous period choices i,_, can affect current period
choices i, by altering the probability distribution of the state variable x,. Thus
the model reflects what Heckman (1981) terms structural state dependence. Given
a cross-section of individuals each of whom has T =2 periods data, we can
compute the likelihood for the full panel by simply multiplying the likelihoods
¢ for each individual. Theorems 9 and 11 of Rust (1987) prove that as the number
of individuals in the cross-section tends to infinity, the corresponding sequence
of maximum likelihood estimators are consistent and asymptotically normally
distributed. Alternatively, one can invoke the martingale limit theorems of
Billingsley (1961) to prove consistency and asymptotic normality of the estimator
for a single individual as the number of time periods T tends to infinity.

Although Theorems 1 and 2 suggest that in theory one can estimate a wide
class of discrete choice processes, in practice the range of estimable models will
be much more limited. The virtue of the approach is that it frees us from using
restrictive and contrived functional forms just because they yield closed-form
solutions. However the drawback is the computational burden of numerical
solution of the contraction fixed point EV, needed to solve the stochastic control
problem. If the approach is to be of any practical use, we must find an efficient
algorithm to compute the maximum likelihood estimates. Theorem 1 and 2 suggest
the following nested fixed point algorithm: an “inner” fixed point algorithm
computes the unknown function EV, for each value of 6, and an “outer” hill
climbing algorithm searches for the value of # which maximizes the likelihood
function. Rust (1987) showed that the contraction mapping T, is Fréchet
differentiable. This enables us to use the highly efficient Newton-Kantorovich
algorithm to compute EV,, and as a by-product, yields analytic solutions for the
0 derivatives of EV, needed to compute the derivatives of the likelihood function.
If the vector x contains components that are continuously distributed, it will be
necessary to discretize these components in order to compute EV, on a digital
computer. The discretization procedure approximates the function EV,, an ele-
ment of an infinite-dimensional Banach space B, by a suitable vector in a
high-dimensional Euclidean space.’ I have programmed the nested fixed point
algorithm on the IBM-PC, and used it to compute fixed points of several hundred
dimensions. The contraction property guarantees that the Newton-Kantorovich
iteration is numerically well-conditioned so that the resulting fixed point is

® Theorems 1 and 2 implicity assume that the fixed point EV, is computed exactly. A referee has
pointed out that if EV, can only be computed approximately, the choice of discretization may affect
the asymptotic distribution of the parameter estimates. The referee suggests expanding the number
of grid points in the discretization as a function of the sample size in order to deduce the correct
asymptotic distribution. The point is well-taken: I think this suggestion is an important area for
further research.
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1014 JOHN RUST

TABLE 1V

APPROXIMATE SPEED OF THE NESTED FIXED POINT ALGORITHM WRITTEN IN
GAUSS FOR THE IBM-PC

Fixed point time” (90 dimensions to tolerance 107'¢) 60seconds
Function evaluation and moment matrix time (16,000 bus/month obs.) 180 seconds
Total time required per likelihood function evaluation 240 seconds®

* During line search, we do not require computation of the moment matrix of first derivatives, resulting in a savings of 30 seconds
Thus approximately 210 seconds are required per likelihood function evaluation during line search.

® The fixed point algorithm can run up to 4 times faster by using special linear equation algorithms which account for the bandec
structure of the transition probability matrix used to compute the Newton-Kantorovich iterations. The results here used a genera
Crout decomposition algorithm to solve the linear system taking no account of the special structure of the problem.

insensitive to round-off-errors as long as B is less than 1. The performance of
the algorithm for the 90-dimensional fixed point problem solved in Section S is
presented in Table IV. Using standard linear algebra routines written in the Gauss
programming language, the nested fixed point algorithm can compute a 90-
dimensional fixed point to within 107'® in two Newton-Kantorovich iterations
in an average of 60 seconds. Using the full data set with approximately 16,000
bus/month observations, the time required to evaluate the likelihood and compute
the moment matrix of first derivatives averaged about four minutes. Thus, internal
computation of the fixed point amounted to about 1/4 of the total time required
for each likelihood function evaluation. Notice that these timings are based on
an algorithm which ignores the special banded structure of the Markov transition
matrix of the regenerative optimal stopping problem. If I use special band-matrix
linear algebra routines which exploit this special structure, I can compute the
fixed point in less than 30 seconds. For details about computation using the
nested fixed point algorithm, see Rust (1985b)."°

5. APPLYING THE NESTED FIXED POINT ALGORITHM TO BUS ENGINE
REPLACEMENT

In this section I generalize the regenerative optimal stopping model presented
in Section 3, eliminating restrictive assumptions about functional form and
incorporating unobserved state variables. The regenerative stochastic process
{i;, x,} derived from the solution to this more general model has no closed-form
solution, but can be estimated using the nested fixed point algorithm described
in Section 4. In terms of the general approach of Section 4 the choice set is
binary, C(x,)={0, 1}. I incorporate unobserved state variables by assuming that
unobserved costs {&,(0), €,(1)} follow a specific stochastic process, to be described
below. Let RC denote the expected cost of a replacement bus engine. In terms
of my earlier notation, RC = P— P and I can write Harold Zurcher’s implied

19 At least four other studies have constructed computable maximum likelihood algorithms which,
similar to the nested fixed point algorithm, require internal computation of the likelihood function,
as well as its value. The studies by Gotz and McCall (1986), Miller (1984), Pakes (1986), and Wolpin
(1984) are, to my knowledge, the first examples of estimable econometric models which are derived
from discrete stochastic control problems which do not have closed-form solutions.
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AN EMPIRICAL MODEL OF HAROLD ZURCHER 1015

utility function as follows:
—RC —¢(0, 0,)+¢/(1) ifi=1,

(5.1)  u(x,i 0‘)+8'(i)={—c(x 6,)+£,(0) ifi=0.

I relax the restrictive functional form assumptions of Section 3 by allowing
monthly mileage (x,+;—X;) to have an arbitrary parametric density function g,
which implies a transition density of the form

g(xl+1 — X¢s 03) if il =0’
g(xl+1 -0, 6;) ifi;=1.

If i, is fixed at 0, formula (5.2) implies that total bus mileage follows a random
walk (with drift), where monthly incremental mileage is given by the density g
with support on (0, c©0). When the behavior of the optimal control i, = f(x,, €,, 6)
is taken into account, (5.2) defines a regenerative random walk for the controlled
process {x,}.

In summary, the data consist of {i}", x/"} (t=1,..., T,,; m=1,..., M) where
i7" is the engine replacement decision in month ¢ for bus m and x" is the mileage
since last replacement of bus m in month t. I assume that the data are a realization
of a controlled Markov process generated from the solution to the infinite horizon
stochastic control problem (4.1). My procedure is to estimate the unknown
parameters 6 = (B, 6,, RC, 6;) by maximum likelihood using the nested fixed
point algorithm. To do this I had to (i) discretize the state variable x, to enable
me to compute the fixed point EV, on the IBM-PC, (ii) specify functional forms
for ¢, q, and g. I discretized mileage into 90 intervals of length 5,000, which
implies that the fixed point EV, is an element of the Banach space B = R*’. Using
the discretized mileage data, the distribution g reduces to a multinomial distribu-
tion onthe set{0, 1, 2}, corresponding to monthly mileage in the intervals [0, 5000),
[5000, 10,000) and [10,000, +0), respectively. Thus, the distribution is completely
specified by two parameters (630, 65,). The functional forms for ¢ which I estimated
include (i) polynomial: ¢(x, 8,) = 6,,x+ 0,,x°+ 6,5x°, (ii) exponential: c(x, 6,) =
0,, exp (6,,x), (iii) hyperbolic: c(x, 6,)=6,,/(91—x), and (iv) square root
c(x, 8,) = 6,,v/x. The exponential and hyperbolic forms were estimated under the
hypothesis that costs are a convex function of mileage, as opposed to the square
root form which implies a concave cost function. I included the polynomial form,
which can be concave, convex, or both, in order to check that my results were
not artifacts of restrictive a priori assumptions about functional form. The disad-
vantage of the polynomial form is that collinearity among the terms can lead to
imprecise estimates of the coefficients (6,,, 6,,, 6,5). Notice that none of the
specifications for ¢ include a constant term. This is due to the fact that the
absolute level of c is not identified since subtracting a constant from the utility
function (5.1) will not affect the choice probabilities. Clearly, the most we can
hope to identify is the value of the change in operating costs as a function of
mileage, so I normalize by setting c(0, 6,) =0.

I assume that the unobservable state variables {¢,(0), (1)} obey an i.i.d.
bivariate extreme value process, with mean normalized to (0, 0) and variance

(5.2) P(Xr+1 |x!’ i, 05) = {
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1016 JOHN RUST

normalized to (#°/6, 7%/6). £,(0) should be interpreted as an unobserved com-
ponent of maintenance and operating costs for the bus in period t. A large negative
value for £,(0) could be interpreted as an unobserved component failure which
sends the bus into the shop for repair, whereas a large positive value could be
interpreted as a bus driver’s report that the bus is operating smoothly. (1)
should be interpreted as an unobserved component of cost associated with
replacing an old bus engine with a newly rebuilt engine. A large negative value
for £,(1) could indicate that all available service bays in the company shop are
occupied, or alternatively, that there are no available rebuilt engines at time ¢
A large positive value for £,(1) could indicate empty service bays and surplus
inventories of rebuilt engines.'' Neither the location nor the scale of these observed
costs are identifiable without additional information, the reason for my arbitrary
normalizations of the mean and variance. Later I will use data on the cost of
replacement engines given in Table III to identify the scale of unobserved costs
{&.(0), & (1)}

The estimation procedure consists of three stages corresponding to each of the
likelihood functions ¢', %, and &, where ¢ is the full likelihood function given
in (4.15), and ¢' and ¢° are “partial likelihood” functions given by

T
(5'3) fl(xl, ceey xT> ila sy i-rle, iOy 0) = H p(xllxl-—ly il—l, 03)a
t=1

T
(54)  l(xi, ..., %p,ir,...,ir|0) =[] P(i|x, 0).
t=1

The first stage is to estimate the parameters 6; of the transition probability
p(X.41]x,, ir, 65) using the likelihood function ¢'. This stage does not require
computation of the fixed point EV,, and reduces to a standard parametric
maximum likelihood problem. One can easily show (using the “principle of
conditionality”, Cox and Hinkley (1974)) that the resulting partial likelihood
estimator is consistent and asymptotically normally distributed. Given our dis-
cretization of the state space, this transition probability is fully specified by two
parameters (63, 65;) where 6;; =Pr {x,,, =X, +j|x, i,=0},j=0,1.

The results of the stage 1 estimation of 6; are presented in Tables V and VI .
Table V includes a likelihood ratio test of the hypothesis that the mileage process
p(X,+1| X, i;, 65) is the same for each bus within a given bus group. As can be
seen from the bottom row of Table V, there is no evidence against this hypothesis.

"' Note that 1 have implicitly assumed that the stochastic processes {x’, ¢/} are independently
distributed across different buses, j. In a perceptive comment, a referee noted that this assumption
may not be valid if Zurcher is attempting to optimize the use of his service bays. A lack of available
service bays may cause Zurcher to simultaneously delay servicing several buses in need of new
engines. This induces correlation across j in the stochastic processes for {x}, £J}. While I think this
is a useful insight, I think its impact is minor relative to other sources of specification error, particularly
relative to assumption (CI). To properly handle the referee’s problem, I would need to formulate a
more complicated model of joint maintenance operations, including optimal scheduling of buses to
service bays. Given my limited data set, this more ambitious model is beyond the scope of this paper.
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AN EMPIRICAL MODEL OF HAROLD ZURCHER 1017

TABLE V

WITHIN GROUP ESTIMATES OF MILEAGE PROCESS
WITHIN GROUP HETEROGENEITY TESTS

(Standard errors in parentheses)

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8

1983 1981 1979 1975 1974 1974 1972 1972
Grumman  Chance GMC GMC  GMC(8V) GMC (6V) GMC (8V) GMC (6V)
03, 197 .391 307 392 .489 618 .600 722
(.021)  (.035)  (.008)  (.007)  (.013) (.014)  (.010)  (.009)
03, .789 .599 683 .595 .507 .382 397 278
(.021)  (.035)  (.008)  (.007)  (.013)  (.014)  (.010)  (.009)
033 014 .010 .010 .013 .005 .000 .003 .000

(.006) (.007) (.002) (.002) (.002) (0) (.001) (0)
Restricted
Log, Likelihood —203.99 —138.57 —2219.58 —3140.57 —1079.18 —831.05 —1550.32 —1330.35
Unrestricted
Log Likelihood —187.71 -136.77 —2167.04 —3094.38 —1068.45 —826.32 —1523.49 —1317.69
Likelihood -

ratio test
statistic 32.56 3.62 105.08 92.39 21.46 9.46 53.67 25.31
Degrees of
Freedom 42 9 141 108 33 18 51 34
Marginal
Significance
Level .852 935 990 .858 939 .948 372 .859
TABLE VI
BETWEEN GROUP ESTIMATES OF MILEAGE PROCESS
BETWEEN GROUP HETEROGENEITY TESTS
(Standard errors in parentheses)
) 1,2,3 1,2,3,4 4,5 6,7 6,7,8 5,6,7,8 Full Sample
6, .301 .348 417 .607 652 618 475
(.007) (.005) (.006) (.008) (.006) (.006) (.004)
0, .688 .639 572 392 347 .380 517
(.007) (.005) (.007) (.008) (.006) (.006) (.004)
035 .011 .012 .011 .002 .001 .002 .007
(.002) (.001) (.001) (.001) (.004) (.001) (.000)
Restricted

Log Likelihood —2575.98 —5755.00 —4243.73 -2384.50 —3757.76 —4904.41 -—11,237.68
Unrestricted
Log Likelihood —2491.51 -—5585.89 —4162.83 —2349.81 -3668.50 —4735.95 -10,321.84
Likelihood

ratio test 168.93 338.21 161.80 69.39 180.52 336.93 1,831.67
statistic
Degrees of
Freedom 198 309 144 81 135 171 483
Marginal
Significance
Level 934 121 .147 .818 .005 1.5E-17 7-7E-10
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1018 JOHN RUST

Table VI shows the extent to which buses in different groups can be pooled. One
can see that although bus groups 1, 2, and 3, and possibly 6 and 7, appear
homogeneous, further aggregation of bus groups appears to be contra-indicated
by the data. On the basis of these results I decided to pool groups 1, 2, and 3
and estimate group 4 separately.

The maintained hypothesis that bus mileage follows a regenerative random
walk is examined in Table VII. Under the random walk hypothesis, the coefficients
B1 and B, in the regression

(5.5) my = Bo+Bimi_+ yifart e

should converge to zero, where m;, = x| —x|_, is the mileage travelled in month
t by bus i and y;, are other explanatory variables. However, if there are unobserved
bus-specific differences in monthly mileage, then e, = a; + u;, and it is well known
that OLS estimates of B, will be upward biased. Consistent estimates of 8, and
B2 can be obtained from the fixed-effect regression

(5.6) my, — ;= By(my_y—m;)+(yi, — y:)B2+ e, — &,

where m;, 7;, and ¢, are the time averages of m;, y,, and e;,. The significance of
the coefficient B, for lagged mileage in the fixed effect regressions in Table VII
is inconsistent with the random walk hypothesis, suggesting a higher order Markov
process for bus mileage. However, when I performed similar fixed effect logit
estimations using the discretized data, lagged mileage was insignificantly different
from zero at the 1 per cent level. This discrepancy is likely due to the loss of
information inherent in discretizing the underlying continuous mileage data.
Given that I am estimating the structural model using the discretized data, I

TABLE VII

FiXED EFFECTS REGRESSION RESULTS DEPENDENT VARIABLE:
MONTHLY MILEAGE (LESS BUS-SPECIFIC MEAN MILEAGE)

(Sample: Bus Groups 1-4)

Marginal
Variable Estimate Standard Error t-Statistic Significance Level
December —135.26 119.13 -1.13 0.256
January 203.79 119.22 1.71 0.087
February -216.08 119.27 -1.81 0.070
March -167.23 119.56 -1.40 0.162
April -12.00 119.18 -0.10 0.920
May —-111.28 123.09 -0.90 0.364
June —185.79 127.39 —1.46 0.145
July 12.77 127.07 0.10 0.920
August 103.18 121.50 0.85 0.393
September —104.67 120.55 —0.87 0.383
October -8.42 120.55 -0.07 0.944
Time 0.6755 2.52 0.26 0.792
Post 1979 Dummy 308.04 102.67 3.00 0.003
Odometer —0.00168 0.00093 —1.83 0.067
Mileage (1 —2) 0 17949 0.02664 6.74 0.000
Mileage (r —1) 0 41807 0.02724 15.37 0.000
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AN EMPIRICAL MODEL OF HAROLD ZURCHER 1019

decided to proceed despite the negative regression results for the underlying “‘raw
data.”

Using the estimates of 6, from the likelihood function ¢' as initial consistent
starting values, in stage 2 I estimated the remaining structural parameters
(B, 6,, RC) using the partial likelihood function ¢ given in equation (5.4).
Maximization of this likelihood function requires internal calculation of the fixed
point EV, at each evaluation of the likelihood according to the nested fixed point
algorithm outlined in Section 4. The final stage 3 estimation used the initial
consistent estimates of 6 computed in stages 1 and 2 in order to produce efficient
maximum likelihood estimates using the full likelihood function ¢. This estimator
also yields a consistent estimator of the asymptotic covariance matrix for 6. Note
that the estimated covariance matrix for the stage 2 estimates is not guaranteed
to be consistent due to the use of the estimated values of 6 instead the true value
6% . However, after computing the fully efficient estimates using , I found that
the estimated covariance matrix was almost perfectly block diagonal, and the
parameter estimates and standard errors produced using ¢> were nearly identical
to the fully efficient estimates. Nevertheless, I present the efficient stage 3 estimates
below.

The stage two estimation results from the nested fixed point algorithm for the
partial likelihood function ¢ are presented in Table VIII. I estimated the structural
model P(i|x, 8) on various subsamples of the data set and for various parametric
specifications of the cost function c(x, 6,), yielding a number of alternative models
which are summarized in Table VIIIL. In order to test for possible heterogeneity
biases, I estimated separate models for the new buses (groups 1, 2, 3) and the
older 1975 buses (group 4) and compared the results to the pooled model (groups
1, 2, 3, 4). By comparing the log-likelihood value of the pooled model (restricted
log-likelihood) to the sum of the log-likelihoods of groups 1, 2, 3, and 4 separately
(unrestricted log-likelihood), I could calculate likelihood ratio tests of the
hypothesis of parameter homogeneity between groups. I also estimated a variety
of alternative functional forms for the cost function c¢(x, 6,) in order to insure
that my conclusions were not artifacts of restrictive a priori choices of functional
form. A completely nonparametric estimation was performed which allowed
c(x, 8,) to be any function. This is essentially equivalent to estimating a 90-
dimensional coefficient vector 6,=(6,,,..., 0,9) where 6,,=c(x,6,), x=
1,...,90. These estimates yield a nonparametric estimate of the hazard function
P(1|x, 6) (equal to the sample average of replacements in each mileage category
x), which in turn produces the maximum attainable value for the log-likelihood
function. Each of the parametric models can be regarded as restricted versions
of the nonparametric model. For example, the cubic model (with 3 free para-
meters) can be regarded as the nonparametric model conjoined with 87 linear
restrictions on the coefficients (6, ;,.... 6, 4). By comparing the log-likelihood
values of a particular parametric model to the log-likelihood value of the nonpara-
metric model, I could perform a likelihood ratio specification test of my a priori
choice of functional form. As you can see from Table VIII, even with a sample
size of 8,156 observations this likelihood ratio or ‘‘Kullback-Leibler”
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1020 JOHN RUST

TABLE VIII
SUMMARY OF SPECIFICATION SEARCH?

Bus Group
Cost Function 1,2,3 4 1,2,3,4
Cubic Model 1 Model 9 Model 17
c(x, 0,) = 0,,x+ 0,,x2+ 0,5x> -131.063 -162.885 —-296.515
-131.177 —162.988 —296.411
quadratic Model 2 Model 10 Model 18
c(x, 6,) = 6,,x+ 6,,x* -131.326 —163.402 -297.939
—131.534 —-163.771 —299.328
linear Model 3 Model 11 Model 19
c(x, 6,)=0,,x —132.389 —163.584 -300.250
—134.747 —165.458 —306.641
square root Model 4 Model 12 Model 20
c(x, 0,)=6,Vx —132.104 —~163.395 —-299.314
—-133.472 —164.143 -302.703
power Model 5° Model 13° Model 21°
c(x, 0,)=6,,x%: N.C. N.C. N.C.
N.C. N.C. N.C.
hyperbolic Model 6 Model 14 Model 22
c(x, 0,) = 6,,/(91—x) —133.408 —165.423 —305.605
—138.894 —174.023 —325.700
mixed Model 7 Model 15 Model 23
c(x, 0,)=0,,/(91—x)+ 0,,Vx —131.418 —163.375 —298.866
—-131.612 —164.048 —301.064
nonparametric Model 8 Model 16 Model 24
¢(x, 6,) any function -110.832 —138.556 —-261.641
-110.832 —-138.556 —261.641

“ First entry in each box is (partial) log likelihood value €2 in equation (5.2)) at 8 =.9999. Second entry is partial
log likelihood value at B =0.
P No convergence. Optimization algorithm attempted to drive 6,,-0 and 8,, - +.

specification test cannot reject any of the particular parametric functional forms
which I tried. As a result, I adopted more intuitive criteria in order to select a
“best fit” model from the array of alternative functional forms. My decision was
a compromise between the objectives of (i) choosing the functional form with
the highest likelihood value, (ii) choosing a functional form which is par-
simonious, yet consistent with my priors and other nonquantitative information
about the bus replacement problem. These criteria lead me to choose the linear
and square root functional forms as the “best fit” specifications.

Tables IX and X present the structural parameter estimates computed by
maximizing the full likelihood function ¢ using the nested fixed point algorithm.
In Table IX I present structural estimates for the unknown parameters (RC, 6,,)
of the linear specification for two alternative discount factors, 8 =0 and 8 =.9999.
The estimation results for 8 =0 can be interpreted as a “myopic model” of bus
engine replacement, under which a replacement occurs only when current oper-
ating costs c(x,, 6,) exceed the current cost of replacement RC +¢(0, 6,). The
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AN EMPIRICAL MODEL OF HAROLD ZURCHER 1023

estimation results for 8 =.9999 (a discount factor which corresponds to a very
low annual real interest rate of .1 per cent) can be interpreted as a ‘“dynamic
model” of bus engine replacement which recognizes that replacing a bus engine
is an investment which not only reduces current costs, but future costs as well.
The “myopia test” on the bottom two rows of Table IX shows that the data reject
the hypothesis that Harold Zurcher behaves as a myopic decisionmaker: the
‘dynamic model with B =.9999 produces a statistically significant improvement
in the ability of the model to fit the data. Although the data clearly reject the
myopic model, I was not able to precisely estimate the discount factor 8. Changing
B to .98 or .999999 produced negligible changes in the likelihood function and
parameter estimates of (RC, 6,,). The reason for this insensitivity is that B is
highly collinear with the replacement cost parameter RC': both parameters induce
similar effects on replacement behavior. For example, raising RC tends to
postpone engine replacement, an effect which can also be achieved by lowering
the discount factor B. Thus, if I treated B as a free parameter, the estimated
information matrix was nearly singular, causing difficulties for the maximization
algorithm. I did note a systematic tendency for the estimated value of B to be
driven to 1. This curious behavior may be an artifact of computer round-off
errors, or it could indicate a deeper result. By Abel’'s Theorem (also known as
the final value theorem for Z-transforms (Howard (1971)), we have limg_,, (1—
B) Yo Bu, =limq_,(1/T) S T_o u, (for a formal proof of this result in the context
of stochastic dynamic programming models, see Bhattacharya and Majumdar
(1986)). This suggests that if Harold Zurcher is actually minimizing long run
average costs, an estimation algorithm based on discounted costs would use Abel’s
theorem and attempt to drive B to 1. This might be what’s happening here."
The “heterogeneity test” in the last two columns of Table IX shows that the
data reject the hypothesis that the structural coefficients (RC, ;) are the same
for bus groups 1, 2, 3, and 4. The data show that Zurcher perceives the new
GMC model 203 buses to have both higher engine replacement costs and a faster
rate of increase in maintenance costs as a function of accumulated mileage. Using
the replacement cost data from Table I11, I can actually identify the scale of the
coefficients (RC, 6,,). For groups 1, 2, 3 the average observed replacement cost
was $9499. Computing the ratio of the actual to estimated replacement cost we
obtain a scale estimate of o =$9499/11.7257. Multiplying this scaling constant
times 6,, I obtain a dollar estimate for 6,, for groups 1, 2, 3 of $3.75. Thus, the
estimates imply that Zurcher perceives average monthly maintenance costs to
increase $3.75 for every 5,000 accumulated miles on the bus. Thus, the expected
maintenance costs for a bus with 300,000 miles are $225.00 per month higher
than for a bus with a newly replaced engine. In comparison, monthly maintenance

12 The identification of 8 depends on a priori specification of the utility function u. Actually B is
nonparametrically unidentified: in the absence of a priori knowledge of the form of u it is impossible
to infer B. This can be seen in Table VIII where the difference in the log-likelihoods for B =0 vs.
B =.9999 disappears as I generalize the specification of the cost function, c. While this theoretical
result might appear disturbing at first, on reflection it is clear we often do have substantial a priori
information about B itself. In the case of Zurcher, we know that 8 must be “large” because g =0
implies an implausibly large rate of increase in monthly operating costs. See Figure 2.
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1024 JOHN RUST

costs for buses in group 4 are estimated to increase only $1.70 for every 5000
accumulated miles on the bus. These results appear to resolve the puzzle raised
in Section 2. The reason that bus éngines are replaced earlier on the newer 1979
GMC buses despite their 25 per cent higher replacement cost seems to be due
to Zurcher’s perception that monthly maintenance costs for the new buses increase
more than twice as fast as a function of mileage.

At this point it is reasonable to ask: how sensitive are the inferences of this
model with respect to (a) choice of cost function, and (b) choice of grid size for
the discretization of bus mileage? Table X, which presents estimation results for
model 11 with a fixed point dimension of 175, gives us some insight into the
latter question. By dividing mileage into nearly twice the number of cells (of
length 2,571 as opposed to 5,000) we obtain a multinomial distribution for monthly
mileage which now depends on 4 parameters: 6;;=Pr{x.,=x+ jlx., i, =0},
j=0,1,2,3. At first sight, Table X seems to show significant changes in the
parameter estimates with a significant deterioration in the value of the log-
likelihood function. However on closer inspection we see that both choices of
grid size fit the data nearly identically. The decrease in the log-likelihood function
is due to the fact that the finer grid size produces more observations in low
probability cells (corresponding to parameters 63, and 6s,) which have low
log-likelihood values. Notice also that while the estimates of the cost function
parameter 0, change significantly, the estimates of RC are nearly identical using
either grid size. Furthermore, the cost function parameter 8,, behaves exactly as
we would expect due to a halving of the grid size: it is cut almost exactly in half.
This produces estimated value and hazard functions which are nearly identical
for either choice of grid size. I ran plots of these functions for the 175-dimensional
case and the plots were visually identical to the plots for the 90-dimensional case
presented in Figures 2 and 3. I also ran a model with a 45-dimensional fixed
point and as expected the coefficient estimates of RC were nearly unchanged but
the estimates of 6,, were nearly double the estimates in the 90 dimensional case.
Notice also that the “myopia test” statistics are nearly identical to the values in
the 90-dimensional case. Only the heterogeneity test statistics change significantly.
This is simply an indication of the increased information content obtained by
finer discretization of the mileage distribution. Nearly the entire increase in the
heterogeneity test statistics can be ascribed to the increased ability to discriminate
among mileage distributions using a finer discretization of the mileage variable.
Thus, I conclude that my inferences are basically unaffected by the choice of
discretization. The parameter estimates may change significantly, but only in such
a way as to maintain a constant estimate of the value and hazard functions which
are basically invariant to the choice of grid size.

I now turn to an analysis of the sensitivity of my results with respect to the
choice of cost function, ¢. The estimation results for the square root form of the
cost function turned out to be nearly identical to the linear case. The change in
functional form yields slightly higher likelihood values, but does not otherwise
alter any of the basic qualitative results found in the linear case. Figure 2 displays
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1026 JOHN RUST

the estimated value function for the linear case, model 11 (note that the value
function is shown in terms of the original unscaled coefficient estimates). Figure
3 displays the estimated hazard function for model 11, including the nonpara-
metric and myopic (8 =0) hazard functions for comparison. We can see that the
linear specification leads to a gently rising hazard function that appears to flatten
out at a hazard rate of about 7 per cent at 450,000 miles. These estimates stand
in marked contrast to the myopic model which implies a rapidly rising
hazard function, with a hazard rate of over 20 per cent at 450,000 miles. It is
unwise to use the nonparametric hazard estimate to try to decide whether or not
the tail behavior of the dynamic model is more realistic than the tail behavior
of the myopic model. Almost all of the observations are concentrated in bus
mileages less than 100,000 and in fact we have very few observations for mileages
beyond 300,000. As a result, the upper tail of the nonparametric hazard is estimated
very erratically, leading ultimately to hazard rate estimates of 0 or 1 depending
upon whether a single bus in a high mileage cell did or did not experience a
replacement. This erratic “Dirac” behavior of the nonparametric hazard makes
it unwise to try to infer anything about the precise nature of the tail behavior of
the true underlying hazard function. Although the problem can be alleviated
somewhat by choosing wider “windows” over which the nonparametric hazard
is calculated, the basic problem is due to lack of observations in the upper tail
and can only be addressed by increasing the size of the sample.

The lack of observations is reflected in the estimated value and hazard functions
for the cubic and quadratic specifications. A positive estimated coefficient 6,; on
the x> term in the cubic model leads to a sharply rising hazard function beyond
300,000 miles. A negative estimated coefficient 6,, for the quadratic model leads
to the opposite behavior, leading to a hazard rate which actually decreases after
350,000 miles. The wide divergence in the tail behavior of these two specifications
was not accompanied by a significant change in the value of the log-likelihood
function. Although the hazard function is precisely estimated until about 300,000
miles, the tail is essentially an artifact of the particular functional form chosen
for ¢(x,, 6,). My prior belief that the hazard function should never decrease leads
me to reject the quadratic specification, and conversations with Harold Zurcher
lead me to reject the cubic model with its sharply rising hazard function. When
asked to choose the hazard function which best represents his engine replacement
behavior, Zurcher chose the hazards derived from the linear and square root
specifications which flatten out at about 7 or 8 per cent after 350,000 miles.
According to Zurcher, monthly maintenance costs increase very slowly as a
function of accumulated mileage. If the mechanical reliability of a bus deteriorates
only very gradually with accumulated mileage, then it makes sense that the hazard
would flatten out instead of abruptly increasing after 400,000 miles as it does in
the myopic and cubic models. Remember that the alternative to not replacing a
bus engine is to replace individual components at time of failure. Eventually
such a “replace on failure” strategy yields bus engines with a significant fraction
of new components, even though some components may have significant accumu-
lated mileage. Thus, even though a given bus may have gone 400,000 miles since
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AN EMPIRICAL MODEL OF HAROLD ZURCHER 1027

last engine replacement, the cumulative maintenance on the bus significantly
reduces the chance that it would suddenly “fall apart.” These considerations
ultimately lead me to reject the cubic and quadratic specifications and to choose
the linear and square root forms as my “best fit” specifications.

Although I have examined the sensitivity of my results with respect to choice
of cost function and grid size, it is very difficult to assess the impact of the crucial
Assumption (CI) used to produce a computationally tractable model. Recall that
(CI) implies that ¢, is independent of ¢, given x,. Thus, lagged {x,_;, i,_;} j =1
do not “cause” i, conditional on the current observed state variable x,. This
suggests the following specification test of Assumption (CI): include the lagged
control variable i,_, as an explanatory variable in the choice model (4.13). If we
let @ be the coefficient of i,_,, then under the null hypothesis (CI), the maximum
likelihood estimate of a should converge to zero with probability 1. Under the
alternative that (CI) does not hold, ¢, and ¢,_, will not be independent given Xx,.
Thus, in this case we would expect that the lagged control variable i,_,=
f(x,—1, €,—1, 0) will be correlated with the current unobserved state variable g,
and hence, the estimated value of a will converge to a nonzero value. Table XI
presents a Lagrange multiplier test of the hypothesis that a = 0.

We can see from Table XI that for group 4 there is no strong evidence that
(CI) is violated, while for groups 1, 2, and 3 and the combined groups 1-4 there
is strong evidence that (CI) does not hold. The reason for rejection in the latter
cases may be due to the presence of “fixed-effects” heterogeneity which induces
serial correlation in the error terms. This suggests that by separating the buses
into more homogeneous subgroups (such as group 4), we can minimize violations
of (CI).

I conclude with Figures 4 and 5 which display the confidence bands for the
estimated value and hazard functions for model 11. Figure 4 shows a uniform
95 per cent confidence band and a ‘“one standard deviation band” about the
estimated value function V3, the latter which was derived by computing the
standard deviation of V4(x) at each point x. Interestingly, this “one standard
deviation” band about the Banach-valued random element V; contains the true

TABLE XI
LAGRANGE MULTIPLIER SPECIFICATION TESTS OF INDEPENDENCE AssUMPTION (CI)*
CosT FUNCTION ¢(x, 6,) =.0016,,x
FiXED POINT DIMENSION =90

Discount

Statistic Factor Groups 1,2,3 Group 4 Groups 1,2,3,4
LM Statistic B =.9999 8.154 2.047° 21.425°¢
B=0 27.086 33.174 60.250
Marginal Significance B=.999 0.0043 0.1526 3.68E-6
Level B=0 1.96E—7 8.44E-9 1.54E-9
# Hypothesns test of @ =0, where a is coefficient of lagged control variable i,_, =f(x,_,, ¢,_,, 6) in choice probability formula (4.13).

P Corresponding Wald and Likelihood Ratio test statistics are 2.073 and l 267 respectlvely
¢ Corresponding Likelihood Ratio statistic is 17.416.
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AN EMPIRICAL MODEL OF HAROLD ZURCHER 1029

value function with probability 25.5 per cent as opposed to the 68.36 per cent
probability for a standard univariate one standard deviation band. Similarly, the
one standard deviation band about the estimated hazard function in Figure 5
contains the true hazard function with probability 25.5 per cent. The discrepancy
is explained by the fact that the standard deviation band is based on the univariate
distribution of P(1 }JE, é), and V(X) at a particular point X, which has no necessary
connection to the distribution of P and V as elements of the Banach space B
(for details on the derivations of the infinite dimensional asymptotic distributions
of p and v, see Rust (1988a)). Notice how the one-standard deviation band
diverges in the tail of the hazard function. This is yet one more indication of the
lack of high mileage observations which prevents accurate inference of the tail
behavior of the hazard function.

The foregoing empirical results lead to two main conclusions: (i) the nested
fixed point algorithm can be a practical, efficient, and numerically stable method
for estimating certain structural models lacking closed-form solutions, (ii) the
data are by and large consistent with my simple regenerative optimal stopping
model of bus engine replacement. Despite the simplicity of the model, it leads
to a wealth of interesting behavioral implications. In particular, the model can
be used to perform a wide wide variety of “‘policy experiments” which forecast
how changes in various structural parameters such as B8, RC, and 6, affect the
timing and frequency of bus engine investment. In Section 6 I show how this is
done by deriving a demand curve for bus engine replacement.

6. CALCULATING THE IMPLIED DEMAND FOR REPLACEMENT INVESTMENT

I conclude by demonstrating the bottom-up approach to demand for replace-
ment investment. Conceptually, the approach is quite simple. The replacement
demand for a specific capital good is simply the sum of the replacement demands
generated by individual decision makers. Multiplying the total replacement
demand by the replacement cost RC of each capital good, I obtain a common
unit of measurement, dollars, which allows me to sum over heterogeneous capital
goods to obtain aggregate replacement investment.

Thus, my problem reduces to computing replacement demand for specific
capital goods and specific decision makers. In the case of Harold Zurcher, annual
demand for bus engines is a random function d(RC) given by the sum

12 M

(61) d(RO)=3 3 Ir
=1z

where each i” is a realization of the regenerative process {i;", x;"}. Given an
initial distribution ,,(x¢’, ig') for the initial states of each bus m, I can compute
the probability distribution of the random function d(RC) using the controlled
transition density P(i,|x,, 6)p(x,|x,_,, i,_,, 65) by integrating out the unnecessary
state variables x,. Then, by varying bus engine replacement costs RC, I can trace
out how the entire probability distribution for replacement investment varies as
a function of replacement costs.
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1030 JOHN RUST

To simplify my presentation, I will focus on calculating the expected replace-
ment demand function d(RC)= E{ d (RC)}, which I expect to be a nicely
behaved, downward sloping function of RC. Suppose that the initial distribution
@ is the long run stationary (or equilibrium) distribution of the controlled process
{i,, x,}. 7 is given by the unique solution to the functional equation

(62)  w(xi) =J J P(i|x, 0)p(x|y, j, )7 (dy, dj).

y oJ )
From (6.2) you can see that the equilibrium distribution 7 is an implicit function
of the structural parameters 6, which I emphasize by the notation 7,. Under the
additional hypothesis that the regenerative processes {i!", x["} and {i¥, x*} are
independent if m # k, I obtain the following simple formula for d(RC):

(e o)

(6.3) d(RC)=12M J me(dx, 1).

Thus, the problem further reduces to computing the equilibrium distribution .
Figure 6 presents the equilibrium distribution for model 11 in the form of the
conditional densities of 7, me(x|1) and me(x|0). Using these densities, the
predicted mean mileage at replacement is estimated to be 287,892 which is within
half a standard deviation of the actual value of 257,336 in Table I1a. The predicted

Equilibrium Distributions: Bus Mileage
Model 11: Pr{x|i=0}, Pr{x|i=1}
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value of mean mileage given that replacement hasn’t yet occurred is 159,305
which is also within half a standard deviation of the actual value of 134,862.
Thus, use of a stationary distribution to compute replacement demand does not
appear to be greatly at odds with the data.

By parametrically varying replacement costs, I can trace out the equilibrium
distribution 7, as a function of RC. In particular, using formula (6.3) I can
compute the expected demand curve for replacement investment. Figure 7 presents
the expected demand function d(RC) for model 11 for a fleet containing a single
bus, M =1. For comparison, I also present the implied demand curve for the
static model with B =0. We can see significant differences in the predictions of
the two models. As one might expect, the demand curve for the myopic model
is much more sensitive to the cost of replacement bus engines, overpredicting
demand at low prices, underpredicting demand at high prices. Notice, however,
that the maximum likelihood procedure insures that both models generate the
same predictions at the actual replacement cost of $4343.

Figure 7 summarizes the value of the “bottom-up’’ approach to replacement
investment. Since engine replacement costs have not varied much in the past,
estimating replacement demand by a “reduced-form” approach which, for
example, regresses engine replacements on replacement costs, is incapable of
producing reliable estimates of the replacement demand function. In terms of
Figure 7, all the data would be clustered in a small ball about the intersection
of the two demand curves: obviously many different demand functions would

Expected Replacement Demand Function
Annual Replacement Demand for Model 11
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1032 JOHN RUST

appear to fit the data equally well. The structural approach, on the other hand,
efficiently concentrates additional information contained in the sequences
{i7", x{"} into estimates of a small number of primitive parameters. Despite the
relatively small number of such parameters, we obtain a rich behavioral model
that can be used to answer a wide range of “what if?” policy questions."

Department of Economics, University of Wisconsin—Madison, Madison,
Wisconsin 53706, U.S.A.

Manuscript received December, 1985; final revision received October, 1986.
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