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 Econometrica, Vol. 55, No. 5 (September, 1987), 999-1033

 OPTIMAL REPLACEMENT OF GMC BUS ENGINES:

 AN EMPIRICAL MODEL OF HAROLD ZURCHER

 BY JOHN RUST'

 This paper formulates a simple regenerative optimal stopping model of bus engine
 replacement to describe the behavior of Harold Zurcher, superintendent of maintenance
 at the Madison (Wisconsin) Metropolitan Bus Company. The null hypothesis is that
 Zurcher's decisions on bus engine replacement coincide with an optimal stopping rule: a

 strategy which specifies whether or not to replace the current bus engine each period as a
 function of observed and unobserved state variables. The optimal stopping rule is the
 solution to a stochastic dynamic programming problem that formalizes the trade-off between

 the conflicting objectives of minimizing maintenance costs versus minimizing unexpected
 engine failures. The model depends on unknown "primitive parameters" which specify
 Zurcher's expectations of the future values of the state variables, the expected costs of

 regular bus maintenance, and his perceptions of the customer goodwill costs of unexpected
 failures. Using ten years of monthly data on bus mileage and engine replacements for a
 subsample of 104 buses in the company fleet, I estimate these primitive parameters and
 test whether Zurcher's behavior is consistent with the model. Admittedly, few people are
 likely to take particular interest in Harold Zurcher and bus engine replacement per se. I

 focus on a specific individual and capital good because it provides a simple, concrete
 framework to illustrate two ideas: (i) a '"bottom-up" approach for modelling replacement
 investment, and (ii) a "nested fixed point" algorithm for estimating dynamic programming
 models of discrete choice.

 KEYWORDS: Optimal replacement, regenerative optimal stopping models, dynamic

 programming, controlled stochastic processes, nested fixed point algorithm.

 1. INTRODUCTION

 THIS PAPER FORMULATES a simple regenerative optimal stopping model of bus

 engine replacement to describe the behavior of Harold Zurcher, superintendent

 of maintenance at the Madison (Wisconsin) Metropolitan Bus Company. The
 null hypothesis is that Zurcher's decisions on bus engine replacement coincide

 with an optimal stopping rule: a strategy which specifies whether or not to replace

 the current bus engine each period as a function of observed and unobserved
 state variables. The optimal stopping rule is the solution to a stochastic dynamic

 programming problem that formalizes the trade-off between the conflicting objec-

 tives of minimizing maintenance costs versus minimizing unexpected engine
 failures. The model depends on unknown "primitive parameters" which specify

 Zurcher's expectations of the future values of the state variables, the expected

 costs of regular bus maintenance, and his perceptions of the customer goodwill

 costs of unexpected failures. Using ten years of monthly data on bus mileage

 and engine replacements for a subsample of 104 buses in the company fleet, I

 estimate these primitive parameters and test whether Zurcher's behavior is con-
 sistent with the model.

 ' This research was made possible by financial support from the Graduate School of the University
 of Wisconsin and National Science Foundation Grant SES-8419570. I thank Alice Wilcox for an
 excellent job typing the manuscript and Tom Rust for his careful work in coding the data. I am
 especially grateful to Harold Zurcher for providing the data used in this study, and for his assistance
 in interpreting the estimation results.
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 1000 JOHN RUST

 Admittedly, few people are likely to take particular interest in Harold Zurcher

 and bus engine replacement, per se. I focus on a particular individual and a

 specific capital good because it provides a simple, concrete framework to illustrate

 two ideas: (i) a "bottom-up" approach for modelling replacement investment

 and (ii) a "nested fixed point" algorithm for estimating dynamic programming

 models of discrete choice.

 The "bottom-up" approach uses a micro-theoretic model to derive aggregate

 replacement investment from individual optimizing behavior. Most existing

 econometric models use a "top down" approach to derive replacement investi-

 ment. This approach, often identified with the work of Jorgenson (1973), requires

 a measure of a hypothetical continuous aggregate capital stock K, and computes

 replacement investment using variations of Wicksell's (1934) original proportional

 decay specification 8K. The limitations of the approach are well known; see, for

 example, the critique by Feldstein and Rothschild (1974). The bottom-up

 approach, on the other hand, generates replacement investment by explicitly

 aggregating individual replacement demands for specific capital goods, including

 bus engines.2 The seemingly continuous demand for replacement investment at

 the aggregate level is actually the sum of a large number of binary-valued

 stochastic processes {i,}, where i, = 1 if a replacement occurs at time t and i, = 0
 otherwise. Taken to its logical extreme, the bottom-up approach requires us to

 begin our investigation at the level of individual capital goods, and even individual

 decision-makers, including Harold Zurcher.3 The idea is to use economic theory

 to "explain" the joint stochastic process {i,, x,}, where x, denotes observed state

 variables associated with the replacement investment decision. I model {i,, x,} as

 a regenerative stochastic process, where a regeneration corresponds to replacing

 an existing used asset with a new one. Under the hypothesis of expected discoun-

 ted profit maximization, {i,, x,} is also a controlled stochastic process generated

 from the solution to a dynamic programming problem. The unknown parameters

 of this stochastic process will generally be a complicated, nonlinear function of

 the "primitive parameters" of the model, namely, the parameters of the

 individual's (or firm's) objective (profit) function, and the parameters of the

 stochastic processes governing observed (and unobserved) state variables.

 Unfortunately, since the controlled process {i,, x,} is the solution to a discrete

 2 The bottom-up approach has also been applied to study new investment; a good example is
 Peck's (1974) model of investment in new electric generators.

 3 Of course, given current limitations on data and computational capacity, I do not pretend that

 the bottom-up approach can offer a practical approach for forecasting aggregate replacement invest-
 ment for the forseeable future. However, to the extent that the approach offers an alternative theory
 of aggregate replacement investment, I thought it would be best to test its validity by constructing a
 narrower, but more precise model at the level of a single individual and single capital good. This
 way I avoid the econometric problems of aggregation bias (such as the use of aggregate capital stock

 measures), and heterogeneity bias that plague studies that use aggregate time-series and disaggregate
 cross-sectional data. By using nonexperimental data I also avoid problems encountered in laboratory
 tests of choice under uncertainty: lack of incentives and insufficient time to learn. Harold Zurcher,
 a professional with over 20 years experience in bus maintenance at Madison Metro, has had plenty
 of time to learn. Furthermore, to the extent Zurcher values his job at Madison Metro, the incentives
 for behaving rationally ought to be quite high.
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 AN EMPIRICAL MODEL OF HAROLD ZURCHER 1001

 stochastic control problem, one will rarely find a closed-form solution for its

 probability density or any sort of "first order condition" convenient for estimation.

 In general the solution can only be described recursively using Bellman's principle

 of optimality. The second objective of this paper is to illustrate a new estimation

 method that allows me to compute maximum likelihood estimates of the primitive

 parameters of a class of controlled stochastic processes, even though there is no

 analytic formula for the associated likelihood function.
 The analysis begins in Section 3 where I derive a regenerative optimal stopping

 model of bus engine replacement which does have a simple analytic solution.

 The model shows how one derives the sample likelihood function

 t(i, . . ., , . XT; 0) for the regenerative process {i,, x,} as the solution to
 a regenerative optimal stopping problem.4 I argue, however, that models with

 closed-form solutions have certain inherent limitations which make them poor

 candidates for empirical work and discuss the deficiencies of the analytic model

 of replacement investment. In Section 4 I describe a nested fixed point maximum

 likelihood algorithm which does not require a closed-form solution to the stochas-

 tic control problem, avoiding many of the limitations of current methods which

 depend critically on the existence of an analytic solution. In Section 5 1 generalize

 the model of Section 3, removing restrictive assumptions about functional forms

 and incorporating unobserved state variables. The regenerative stochastic process

 {i,, x,} derived from the solution to this more general model has no closed-form

 solution, but can be estimated using the nested fixed point algorithm described

 in Section 4. Using this algorithm, I compute maximum likelihood estimates of

 the primitive parameters of the model. I conclude in Section 6 by deriving the

 implied demand curve for replacement investment by aggregating over the

 individual regenerative processes {i,, x,}.

 2. THE DATA

 Before I prejudice you with a theoretical model, it's useful to give a simple

 description of the data. Harold Zurcher was kind enough to provide me with

 maintenance records on 162 buses in the fleet of Madison Metro over the period

 December, 1974 (or date of purchase for buses purchased after 12/74) until May,

 1985. The data consist of monthly observations on the mileage (odometer reading)

 on each bus, plus a maintenance diary which records the date, mileage, and list

 of components repaired or replaced each time a bus visits the company shop.

 "There is a vast literature in operations research on optimal maintenance and replacement of
 stochastically deteriorating assets (see, for example, the surveys by Pierskalla and Voelker (1976)
 and Sherif and Smith (1981)). By and large the focus of this literature is normative: starting from

 specific assumptions about the objective function and the stochastic process governing deterioration,

 one derives an optimal replacement strategy from the solution to a stochastic control problem. This

 paper can be viewed as solving the "inverse" problem: given observations on a sequence of asset

 states and replacement decisions, I go backwards and infer the objective function and the stochastic

 process governing deterioration whose associated optimal replacement strategy coincides with the

 observed data.
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 1002 JOHN RUST

 TABLE I

 Bus TYPES INCLUDF-D IN SAMPLE

 Number Estimated
 Bus of Empty Purchase V4lue as

 Group Buses Manufacturer Engine Model Year Seats Weight Price of 10/1/84

 1 15 Grumman V6-92 series 870 1983 48 25,800 $145,097 $145,097

 2 4 Chance 3208 CAT RT-50 1981 10* N.A. 100,775 124,772
 3 48 GMC 8V71 T8H203 1979 45 25,027 92,668 125,000
 4 37 GMC 8V71 5308A 1975 53 20,955 62,506 55,000
 5 12 GMC 8V71 5308A 1974 53 20,955 49,975 48,000
 6 10 GMC 6V71 4523A 1974 45 19,274 45,704 48,000
 7 18 GMC 8V71 5308A 1972 51 20,955 43,856 45,000

 8 18 GMC 6V71 4523A 1972 45 19,274 40,542 40,000

 Note All buses are diesel powered and have air conditioning

 * Handicap bus, outfitted with 4 long benches and accommodation' for 6 wheelchairs.

 Maintenance operations fall into three categories: (i) routine, periodic mainten-

 ance (examples are brake adjustments and tire rotation), (ii) replacement or

 repair of individual components at time of failure, and (iii) major engine overhaul

 and/or replacement. This study focuses on the third component of maintenance

 investment, which can be regarded as part of a general "preventive maintenance"

 strategy in the following sense. The bus engine can be viewed as a portfolio of

 individual components each of which has its own individual stochastic failure

 or "hazard" rate as a function of accumulated use (as measured by the bus

 odometer). If a particular component fails when a bus has relatively low mileage,

 then it seems reasonable to simply replace or repair the failed component and

 put the bus back on the road. However when a particular component fails on a

 bus with relatively high mileage, then to the extent that one wants to minimize

 unexpected failures it seems reasonable to expect that other components will fail

 in the near future, so it might make sense to replace the entire engine with a

 "new" engine freshly rebuilt in the company machine shop (Zurcher claims that

 rebuilt engines are every bit as good, if not better, than engines purchased brand

 new). Under the maintained hypothesis that this preventive maintenance strategy

 is optimal, I focus on constructing a model which predicts the time and mileage

 at which engine replacement occurs.

 Table I Ia summarizes the replacement data for the subsample of buses which

 had at least one engine replacement. On average, bus engines were replaced after

 5 years with over 200,000 elapsed miles. Data for the full sample are also

 summarized visually in Figure 1, which shows considerable variation in the time
 and mileage at which replacement occurs. Looking across the different bus groups,

 we notice large differences in the mean age and mileage at replacement, although

 it is difficult to tell whether these differences are significant given the large standard
 deviations and small numbers of observations. A statistical problem with the

 simple tabulation in Table Ila is that although the use of complete spells avoids
 bias due to censoring, it fails to account for possible selection bias. Table Ilb
 looks at the subsample of buses for which no replacements occurred. These data
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 AN EMPIRICAL MODEL OF HAROLD ZURCHER 1003

 TABLE Ila

 SUMMARY OF REPLACEMENT DATA

 (Subsample of buses for which at least I replacement occurred)

 Miledge dt Repldcement l Idpsed Time (Months)

 Bus Standard St4nddrd Number of

 Group Ma s Min Mean D)evidtion Ma Min Mle4n D)eidtion Observadtions

 1 0 0 0 0 0 0 0 0 0
 2 0 0 0 0 0 0 0 0 0

 3 273,400 124,800 199,733 37,459 74 38 59.1 10.9 27

 4 387,300 121,300 257,336 65,477 116 28 73.7 23.3 33
 5 322,500 118,000 245,291 60,258 127 31 85.4 29.7 11

 6 237,200 82,400 150,786 61,007 127 49 74.7 35.2 7
 7 331,800 121,000 208,963 48,981 104 41 68.3 16.9 27

 8 297,500 132,000 186,700 43,956 104 36 58.4 22.2 19
 Full

 Sample 387,400 83,400 216,354 60,475 127 28 68.1 22.4 124

 are right censored since we do not observe the final age and mileage at which

 replacement occurs. We can see from Table Jlb that despite the right censoring,
 both the mean elapsed age and mileage are significantly higher for this subsample.

 The data for bus groups 7 and 8 are also left censored since these buses were

 acquired in 1972 and my data begin in December, 1974. The presence of these

 biases makes it difficult to summarize the unconditional population distribution

 of the age and mileage at replacement. The empirical analysis in Section 5
 implicitly accounts for censored spells through the use of a conditional likelihood
 function given the observed sample of data. I account for selection bias by

 allowing for heterogeneity in parameter estimates across bus groups.

 The empirical analysis in Section 5 focuses on a subsample of the full data

 set, bus groups 1-4. The buses in these groups were the most recent acquisitions

 TABLE lib

 CENSORED DATA

 (Subsample of buses for which no replacements occurred)

 Mileage it May 1. 1985 1 lapse( Trime (months)

 Bus Standard Standard Number of
 Group Max Min Mean Deviation Max Min Mean D)euation OhsersJtions

 1 120,151 65,643 100,117 12,929 25 25 25 0 15
 2 161,748 142,009 151,183 8,530 49 49 49 0 4

 3 280,802 199,626 250,766 21,325 75 75 75 0 21
 4 352,450 310,910 337,222 17,802 118 117 117.8 0.45 5
 5 326,843 326,843 326,843 0 130 130 130 0 1
 6 299,040 232,395 265,264 33,332 130 128 129.3 1.15 3
 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0
 Full

 Sample 352,450 65,643 207,782 85,208 130 25 66.4 34.6 49
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 1004 JOHN RUST

 Bus Replacement Data: Full Sample
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 FIGURE 1

 at Madison Metro, the main "workhorses" on the company's most active bus
 routes. I focus on this subsample for two reasons: (a) data on actual engine
 replacement costs were available for these groups, (b) utilization, summarized
 by the monthly mileage distributions for each bus, is fairly homogeneous within
 each of the four groups. Since the estimation procedure allows for heterogeneity
 between groups, but does not account for differences in buses within each group,
 I wanted to minimize the possible heterogeneity bias by selecting bus groups
 which appeared to be most homogeneous. Estimates of discretized monthly
 mileage given in Table VI in Section 5 show that we cannot reject the hypothesis
 that the monthly mileage distributions for the individual buses within each of
 these groups are identical. On the other hand the older 1972 and 1974 GMC
 buses in groups 5-8 have been utilized less intensively since the acquisition of
 the new GMC model 203 buses in 1979. The fixed effects regression results in
 Table VII of Section 5 (see equation (5.6)) show that monthly mileage for the
 newer groups 1-3 is significantly higher, by 308 miles. The policy of putting older
 buses "out to pasture" on charter assignments and low mileage routes suggests
 that a simple replace/no replace model which treats utilization as exogenous is
 not strictly correct. Less intense utilization is an obvious substitute for more
 frequent maintenance. Older buses can also be kept in inventory as back-ups or
 "spares", providing another substitution possibility. Although utilization and
 replacement are best viewed as jointly endogenous decisions in a comprehensive
 maintenance policy, I decided that since a joint model is substantially more
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 AN EMPIRICAL MODEL OF HAROLD ZURCHER 1005

 TABLE III

 AVERACiE ENGINE REPLACEMENT COSTS'

 Bus Group

 Operation 1,2,3 4 1,2,3,4

 Labor timeb to drop engine $ 150 $ 150 $ 150
 Labor timeb to overhaul engine 3373 2870 3032
 Parts required to overhaul engine 5826 4343 4730
 Labor timeb to re-install engine 150 150 150

 Total cost of replacement $9499 $7513 $8062

 Based on 1985 replacement cost data supplied by Harold Zurcher.
 Includes fringe benefits.

 complex, and since these rather subtle interrelationships would be difficult to

 identify given my limited sample, it would be best to focus on the simplest model

 capable of explaining the major features of the data.

 Table III shows the average engine replacement costs for bus groups 1 to 4.

 These data will be used in Section 5 to identify additional parameters of an

 expected cost function which specifies Zurcher's perceptions of the combined

 costs of monthly maintenance and lost customer goodwill due to unexpected

 breakdowns. Notice that total replacement costs for the newer buses (groups 1,

 2, 3) is about 25 per cent higher than the older 1975 GMC buses. Despite these

 higher replacement costs we can see from Table Ila that engine replacements for

 the newer buses occur on average 57,600 miles and 14.6 months earlier than for

 the older 1975 GMC buses. Presumably the operating and maintenance costs for

 the newer buses must increase faster than for the older buses in group 4 in order

 to warrant this behavior.

 3. OPTIMAL REPLACEMENT OF BUS ENGINES

 My objective is to explain the bus data by deriving a regenerative stochastic

 process {i,, x,} with an associated likelihood function f(i I ..., iT, X1, - - , XT; 0)
 formed from the solution to a particular regenerative optimal stopping problem.

 Let the state variable x, denote the accumulated mileage (since last replacement)

 on the bus engine at time t and suppose that expected per period operating costs
 are given by an increasing, differentiable function of x,, c(x,, Os). Operating costs
 are the sum of maintenance, fuel, and insurance costs (which are potentially

 observable), plus Zurcher's estimate of the costs of lost ridership and goodwill
 due to unexpected breakdowns. The latter costs are generally not directly observ-

 able, so I attempt to infer them by postulating a total cost function c( , 0,) and
 estimating O. The function c can be decomposed as follows:

 (3.1) c(x, A9l) = m(x, 011) +, t(x, 012) b(x, 013)

 where m(x, 0,l) is the conditional expectation of normal maintenance and operat-
 ing expenses, ,u(x, 012) is the conditional probability of an unexpected engine

This content downloaded from 
�������������50.199.227.73 on Sat, 04 Oct 2025 17:08:08 UTC������������� 

All use subject to https://about.jstor.org/terms



 JOHN RUST

 failure, and b(x, 013) is the conditional expectation of towing costs, repair costs,
 and the perceived dollar cost of lost customer goodwill in the event of an
 unexpected engine failure. Given actual maintenance and operating cost data,
 one could directly estimate m by nonlinear regression. Unfortunately I do not
 have these data, nor do I have data on the occurrence of unexpected breakdowns,
 so I am unable to separately identify the functions m, u, and b. Therefore the
 best I can do is to specify and estimate their sum, c.
 Suppose that the mileage travelled each month by a given bus is exponentially

 distributed with parameter 02, independently of mileage driven in previous
 periods. Each month, Zurcher faces the discrete decision: (i) perform "normal
 maintenance" on the current bus engine and incur operating costs c(x,, 01), or
 (ii) "cannibalize" the old bus engine for scrap value P, install a new (or rebuilt)
 bus engine at cost P, and incur operating costs c(0, 01). I assume that Zurcher
 chooses an optimal replacement policy to minimize the expected discounted costs
 of maintaining his fleet of buses. Let i, denote Zurcher's replacement decision
 at time t, i,=0 (keep), i, = 1 (replace). It follows that the stochastic process
 governing {i,, x,} is the solution to the following regenerative optimal stopping
 problem:

 (3.2) Vo(x,)=supE E{ /3-'u(xjf, 01) xt}
 n l j=

 where the utility function u is given by

 r^-n ^v I -c(x, 01) if it =0, (3.3) u(x, i, 01) - _-[p - p+ c(0, 0)] if i = 1,

 and where 7 is an infinite sequence of decision rules I = {f, f,+,...} where each
 f, specifies Zurcher's replacement decision at time t as a function of the entire
 history of the process, it =f/(xt, i,_t, x,_1, i,_2, xt_2,...) and the expectation in
 (3.2) is taken with respect to the controlled stochastic process {xt} whose probabil-
 ity distribution is defined from 7 and the transition probability p(x,+l | xt, i,, 02).
 The utility function (3.3) shows why I call the model a regenerative optimal
 stopping model of engine replacement: once the bus engine is replaced the system
 "regenerates" to state xt = 0. This regeneration property is formally defined by
 the stochastic process governing the evolution of {xt} given by the transition
 probability p(xt+l x,, i,, 03) below:

 02 exp {02(Xt+l - X,)} if i =0 and x,t+ I x,,
 (3.4) p(xt+ xt, i,,02)= 02 exp{02(Xt+l)} if i = 1 and x,+l 0,

 0 otherwise.

 According to (3.4) if the decision is made to keep the current bus engine (i, = 0),
 then next period accumulated mileage x,+l is given by a draw from the exponential
 distribution 1 -exp {02(x,+1 - x)}. However if the decision is made to replace the
 bus engine (it = 1), then x, regenerates to state 0 and next period accumulated
 mileage x,+l is a draw from the exponential distribution 1 -exp {02(x,+l -0)}.

 1006
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 AN EMPIRICAL MODEL OF HAROLD ZURCHER 1007

 The function V6(x,) defined in (3.2) is the value function and is the unique

 solution to Bellman's equation given by5

 (3.5) V0(x,)= max [u(x, i, 01i)+PEV,(xt, it)]
 i, e C (x,)

 where C(xt) = {0, 1} and where the function EV,(xt, it) is defined by
 *00

 (3.6) EV,(xt, it) j 9 V(y)p(dyIx, it, 02).

 Using Bellman's equation, I have shown elsewhere (Rust, (1986a)) that there is

 an optimal stationary, Markovian replacement policy H = (f, f ...) where f is
 given by

 (3.7) it =f(x,J0)= 1 if Xt>Y(01 02), ~~~~~ if Xt -<Y(01, 02),
 where y(01, 02) is the unique solution to

 - r(l~~~~10,02)
 (3.8) (P - P)(1 - _ ) = J [1 -p exp {-02(1 -,L3)y}] aC(y, 01)/QY dy.

 The constant y represents a threshold value of mileage (optimal stopping barrier)

 such that whenever current mileage on the bus xt exceeds y it is optimal to incur
 the replacement costs RC = (P - P) and replace the old bus engine with a new one.

 The likelihood function [(il ,. . ., iT, X1, .. ., XT, 0) specifies the conditional
 probability density of observing the sequence of states and replacement decisions
 for a single bus in periods 1 to T Under the assumption that monthly mileage
 and replacement decisions are independently distributed across buses, the likeli-
 hood function L(0) for the full sample of data is simply the product of the
 individual bus likelihoods t. The precise functional form of this likelihood
 function can be easily derived from the optimal stopping rule (3.7) and (3.8)
 using the regeneration property, the fact that the distribution of monthly mileage
 is exponential, and the easily proven result that the distribution of the optimal

 stopping time (i.e. the first passage time from x = 0 to the optimal stopping barrier
 y) is Poisson with parameter 02y. This structural model has two key features
 which distinguish it from traditional reduced-form models of replacement invest-
 ment: (i) the parametric specification occurs at the level of the primitive objects

 of the model, namely, the utility function u(xt, ti, 01) and the transition probability
 P(Xt+I I Xt, i,, 02), (ii) the sample likelihood function is not specified directly, but
 rather is derived from the solution to the underlying optimization problem. Thus,
 [ is simply the probability density of the controlled stochastic process {i,, x,}.

 Although this simple model leads directly to a convenient, analytic formula
 for the likelihood function, I have serious reservations about using it for empirical

 5 A good reference on dynamic programming and stochastic control which derives Bellman's
 equation is Bertsekas (1976).
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 1008 JOHN RUST

 work. The solution for the likelihood function depends critically on specific

 choice of functional form: namely, that monthly mileage (x,+ - x,) has an i.i.d.
 exponential distribution. Unfortunately, my sample of data flatly refutes this
 assumption: the exponential distribution constrains the mean and standard devi-

 ation of monthly mileage to be equal, whereas the data show that the standard

 deviation is less than one third of mean monthly mileage. If I try to use a more
 realistic mileage distribution (such as the log-normal distribution which has

 separate parameters for mean and variance), I can no longer obtain an explicit
 solution for the stochastic control problem (3.2) and the associated likelihood

 function.6 Perhaps even more restrictive is the basic model formulation which
 assumes that the physical state of a bus is completely described by a single

 variable, accumulated mileage x,. This formulation implies a degenerate hazard
 function for bus engine replacement: the probability of replacing a bus engine
 is 0 in the interval (0, y) and 1 thereafter. Looking back at the replacement data

 summarized in Figure 1 we can see that there is clear evidence against the
 hypothesis of a single fixed optimal stopping barrier y: mileage at replacement

 varies from a minimum of 82,400 to a maximum of 387,300. This variation is too
 large to be consistent with a threshold replacement rule. More realistically, we

 might assume that the odometer value x, might be only one indicator of the
 physical state of the bus, and Harold Zurcher might base his replacement decisions

 on other information E which we have not observed. Unfortunately, my attempts
 to formulate a more realistic model which included such unobserved state variables

 lead to models which had no analytical solution.

 The problem of statistical degeneracy caused by a failure to account for

 unobserved state variables is not unique to this model; it is a problem common
 to the majority of models in decision theory. A basic result in Markovian decision

 theory (cf. Blackwell (1968)) shows that under quite general conditions the
 solution to the class of infinite horizon Markovian decision problems takes the
 general form

 (3.9) it =f(xt, 0)

 where f is some deterministic function relating the agent's state variables xt to
 his optimal action it. Suppose we assume that there are no unobserved state
 variables, i.e. that the econometrician observes all of xt. The theory then implies
 that the data obey the deterministic relation (3.9) for some unknown parameter
 value 0*. However in general, real data will never exactly obey (3.9) for any
 value of the parameter 0: the data contradict the underlying optimization model.

 The typical solution to this problem is to "add an error term" Et in order to
 reconcile the difference between f(x,, 0) and the observed choice it

 (3.10) it =f(xt, 0) + Et.

 6 The solution requires computation of the fixed point Vo to the functional equation (3.4) and
 computing the optimal stopping boundary yo by solving the nonlinear equation V6(y)=
 P - P+ Vo(O).
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 AN EMPIRICAL MODEL OF HAROLD ZURCHER

 By making a convenient distributional assumption for e,, one might use the model
 (3.10) to estimate 0. The difficulty with this procedure is that it is internally
 inconsistent: the structural model was formulated on the hypothesis that the
 agent's behavior is described by the solution of a dynamic optimization problem,
 yet the statistical implementation of that model implies that the agent randomly
 departs from this optimal solution. If error terms E, are to be introduced to a
 structural model in an internally consistent fashion, they must be explicitly
 incorporated into the solution of the dynamic optimization problem. When this
 is done, a correct interpretation of the "error term" E, is that it is an unobservable,
 a state variable which is observed by the agent but not by the statistician.7

 4. STRUCTURAL ESTIMATION WITHOUT CLOSED-FORM SOLUTIONS

 Rust (1987) has developed a maximum likelihood estimation algorithm for a
 class of dynamic discrete choice models which (i) does not require closed-form
 solutions for the agent's stochastic control problem and associated likelihood
 function, and (ii) treats unobservables E, in an internally consistent fashion by
 explicitly incorporating them into the formulation and solution of the model.
 Although the algorithm can estimate a considerably wider class of models than
 the regenerative processes considered here, the basic notation for the general
 case is no more complicated, so I present the general notation below:

 C(x,):

 , = {et(i) i C(X,)}:

 u(xt, i, 01)+ Et(i):

 p(Xt+i, Et+1 Xt, Et, it, 02, 03):

 0=( (, 01, 02, 03):

 Choice set; a finite set of allowable values of the
 control variable i, when state variable is x,.
 A # C(x,)-dimensional vector of state variables
 observed by agent but not by the econometrician.
 £,(i) is interpreted as a component of utility of an
 alternative i in time period t which is known by
 the agent but not by the econometrician.
 K-dimensional vector of state variables observed

 by both the agent and the econometrician.
 Realized single-period utility of decision i when
 state variable is (x,, e,). 01 is a vector of unknown
 parameters to be estimated.
 Markov transition density for state variable (x,, e,)
 when alternative i, is selected. 02 and 03 are vectors
 of unknown parameters to be estimated.
 The complete (1+ K1 + K2+ K3) vector of para-
 meters to be estimated.

 Given the stochastic evolution of the state variables (x,, e,) embodied by the
 transition probability p, the agent must choose a sequence of decision rules or

 7 Besides increased realism, the addition of unobservable state variables offers another benefit:
 additional parameters can be estimated. The rigid specification of the replacement model without
 unobservables condenses all information about replacement behavior into the single constant y. As
 a result, at most 1 cost function parameter 01 is identifiable in this model (see equation (3.8)). Addition
 of unobservables produces a model which can be consistent with a wide variety of shapes for the
 implied replacement hazard function, enabling us to identify more cost function parameters, as well
 as the replacement cost parameter RC and possibly the discount factor 3.
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 JOHN RUST

 controls f,(x,, t, 0) to maximize expected discounted utility over an infinite
 horizon. Define the value function Vo by

 (4.1) V,(x,, t) =sup E { E p(j)[u(j, f, 01)+ E(J)]lx,,, ] ,, 02, 03} n j=t

 where H = {f,,f,t+,ft+2, ... }, ft C(xt) for all t, and where the expectation is
 taken with respect to the controlled stochastic process {xt, e} whose probability
 density is defined from H and the transition probability p by

 (4.2) dp{x,+l, Et+l,..., Xt+N, Et+N I Xt, E,
 N-i

 = H p(Xi+l, Ei+ I Xi Ei,f(Xi, Ei), 02, 03)-
 i=t

 Problem (4.1) is known as an infinite-horizon, discounted Markovian decision
 problem. Under certain regularity assumptions described in Rust (1987) the
 solution to this problem is given by a stationary decision rule

 (4.3) i, =f(xt, e,, 0)

 which specifies the agent's optimal decision when the state variables are (x,, e,).
 The optimal value function Vo is the unique solution to Bellman's equation given
 by

 (4.4) Vo(x,, e,)= max [u(x,, i, 01)+et(i)+ PEV(xt, et, i)]
 iEC(xt)

 where

 (4.5) EVo(x,, e,, i)- J Vo(y, r)p(dy, djx xt,,, i, 02, 03)
 y 7

 and the optimal control f is defined by

 (4.6) f(x,, et, 0)argmax[u(x,, i, 01)+e,(i)+l3EVe(x,, e, i)].
 ieC(xt)

 As it stands, there are two difficulties which hamper direct econometric
 implementation of the model i =f(x, et, 0) given by the solution to (4.4) and
 (4.6). First, many commonly chosen distributions for the unobservable E, will be
 continuously distributed with unbounded support. However, this raises serious
 dimensionality problems since the optimal stationary policy f will ordinarily be
 computed by solving for the fixed point Vo from Bellman's equation. Even taking
 a rough grid approximation to the true continuous distribution of e,, the
 dimensionality of the resulting finite approximation will still be too large to be
 computationally tractable. Secondly, since et appears nonlinearly in the unknown
 function EVo, we face the additional problem of integrating out over the et
 distribution to obtain choice probabilities. Since EVo is an unknown function,
 this will require the dual task of integrating Vo with respect to a finite grid
 approximation of the density p(x,t+, Et+I \Xt, Et, i, 02, 03) to obtain EVo, and then
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 AN EMPIRICAL MODEL OF HAROLD ZURCHER

 numerically integrating Bellman's equation (4.4) to obtain the conditional choice
 probability P(i, I x, 0). The following assumption (number (A6) in Rust (1987))
 enables us to circumvent these problems.

 CONDITIONAL INDEPENDENCE ASSUMPTION (CI): The transition density of the
 controlled process {xt, et, factors as

 (4.7) p(x,+l, e,+1 Ix, £E, i, 2, 03) = q(E,+l Ix,+, 02)p(xt+ljxt, i, 03).

 Assumption (CI) involves two restrictions. First, x,+l is a sufficient statistic for
 Et+l, which implies that any statistical dependence between e, and e,+1 is transmit-
 ted entirely through the vector x,+l. Second, the probability density of x,+l
 depends only on x, and not et. Intuitively, the {e,} process can be regarded as
 noise superimposed on the underlying {xj} process, since in each period t, e, is
 drawn according to the density q(e, I xt, 02) given the realized value of x,. Admit-
 tedly, (CI) is a strong assumption.8 The payoff is twofold. First, (CI) implies that
 EVo is not a function of e,, so that required choice probabilities will not require
 integration over the unknown function EVo. Second, (CI) implies that EVo is a
 fixed point of a separate contraction mapping on the reduced state space F =
 {(x, i) xe RK, ie C(x)}, eliminating the need to compute the fixed point Vo on
 the much larger full state space S= {(x, e) x E RK, e c R#(X)} and avoiding the
 numerical integration required to obtain EVo from Vo. These results are summar-
 ized in the following theorem proven in Rust (1987).

 THEOREM 1: Assume that (CI) holds. Let P(i x, 0) denote the conditional
 probability of choosing action i c C(x) given state variable x. Let G([u(x, 0,)+
 f3EV0(x)] x, 02) denote the social surplus function corresponding to the density
 q( Ix, 02), defined by

 (4.8) G([u(x, 01) + PEVo(x)] x, 02)

 max [u(x,j, 01)+/3EVo(xj)]q(de x, 02). j JEC(x)

 Then P(i x, 0) is given by

 (4.9) P(i x, 0)= G,([u(x, 01)+,3EVo(x)]lx, 02)

 where Gi denotes the partial derivative of G with respect to u(x, i, 01) and the
 function EVO is the uniquefixed point to a contraction mapping To, To(EVo) = EVo,
 defined for each (x, i) e r by

 (4.10) EVo(x, i)= I G([u(y, 0l)+13EV0(y)]jy, 02)p(dy\x, i, 03).
 y

 8 I present a specification test for (CI) in Section 5.
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 JOHN RUST

 The significance of Theorem 1 is that the conditional choice probabilitie,
 P(ilx, 0) can be computed using the same formulas used in the static case witt
 the addition of the term 3EVo(x, i) to the usual static utility term u(x, i, 0,)
 Notice that McFadden's (1973), (1981), static model of discrete choice appear,
 as a special case of Theorem 1 when p( I x, i, 03) is independent of i. In that case
 the expected utilities EVo(x, i) are also independent of i which implies that G
 is a function of {u(x,j, 0)jc C(x)} alone. This implies that P(ilx, 0)=
 Gi(u(x, 0)Ix, 02) can be interpreted at the usual static choice probability. The
 intuition behind this result is clear; when p( I x, i, 03) is independent of i, currenl
 choices do not affect the evolution of the state variables {x,, ,} and so have nc
 future consequences. Therefore, it is optimal to behave myopically each perioc
 and choose the alternative i which maximizes single period utility u(x,, i, 0)+4
 e,(i). When current choices do have future consequences, the term /3EVo(x, i,
 provides the appropriate "shadow price" for the future consequences of eact
 action and must be added to the current utility in order to correctly describe the
 optimal behavior of the agent. Specific functional forms for q(e y, 02) yield more
 concrete formulas for the choice probability P(i x, 0) and the contraction map-
 ping To. For example, if q(e y, 02) is given by a multivariate extreme value
 distribution

 (4.11) q(e x, 02)= I exp {-E(j)+ 02} exp {-exp {-E(j)+ 02}}
 jEC(x)

 02 = = 0.577216,

 then the social surplus function G is given by

 (4.12) G([u(x, 0,)+ 3EVo(x)] I x, 02)

 =ln t exp[u(x,j,Oi)+3EVe(x,j)]},
 jeC(x)

 P(i x, 0) is given by the well-known multinomial logit formula

 exp{u(x, i, ,0)+±3EVo(x, i)}

 exp{u(x,j,0 )+,1EVe(x,j)}
 jeC(x)

 and EVo is given by the unique solution to the functional equation

 (4.14) EVo(x, i)= log { E exp[u(y,j, O0)+13EVo(y,j)]}p(dyx, i, 03).
 Jy ej C(y)

 We now are in position to state exactly how the structural parameters of the
 controlled process {i, xj, can be estimated. Given time series observations
 {(io, o), (i, xI),..., (iT, XT)} for a single individual we form the likelihood
 function ff((i, x,,..., iT, XT io, xo, 0) and estimate the unknown parameters 6
 by the method of maximum likelihood. The following theorem of Rust (1987)
 shows that under Assumption (CI) this likelihood function has an especially
 simple form.
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 AN EMPIRICAL MODEL OF HAROLD ZURCHER 1013

 THEOREM 2: Under Assumption (CI) the likelihoodfunction ff is given by
 T

 (4.15) (XI,..., XT, i, I ... iT I Xo, io, 0) = Hl P(it IxI, 0)p(Xt IXt-1, it-1,, 03),
 t=1

 where P(it I Xt, 0) is given by (4.9).

 Formula (4.15) shows how previous period choices it-, can affect current period
 choices it by altering the probability distribution of the state variable xt. Thus
 the model reflects what Heckman (1981) terms structural state dependence. Given

 a cross-section of individuals each of whom has T - 2 periods data, we can

 compute the likelihood for the full panel by simply multiplying the likelihoods

 ii for each individual. Theorems 9 and 11 of Rust (1987) prove that as the number
 of individuals in the cross-section tends to infinity, the corresponding sequence

 of maximum likelihood estimators are consistent and asymptotically normally

 distributed. Alternatively, one can invoke the martingale limit theorems of
 Billingsley (1961) to prove consistency and asymptotic normality of the estimator
 for a single individual as the number of time periods T tends to infinity.

 Although Theorems 1 and 2 suggest that in theory one can estimate a wide

 class of discrete choice processes, in practice the range of estimable models will

 be much more limited. The virtue of the approach is that it frees us from using
 restrictive and contrived functional forms just because they yield closed-form

 solutions. However the drawback is the computational burden of numerical

 solution of the contraction fixed point EVi0 needed to solve the stochastic control
 problem. If the approach is to be of any practical use, we must find an efficient

 algorithm to compute the maximum likelihood estimates. Theorem 1 and 2 suggest
 the following nested fixed point algorithm: an "inner" fixed point algorithm
 computes the unknown function EV,i for each value of 0, and an "outer" hill
 climbing algorithm searches for the value of 0 which maximizes the likelihood

 function. Rust (1987) showed that the contraction mapping To is Frechet
 differentiable. This enables us to use the highly efficient Newton-Kantorovich

 algorithm to compute EVli, and as a by-product, yields analytic solutions for the
 0 derivatives of EVO needed to compute the derivatives of the likelihood function.
 If the vector x contains components that are continuously distributed, it will be
 necessary to discretize these components in order to compute EV0 on a digital
 computer. The discretization procedure approximates the function EVO, an ele-
 ment of an infinite-dimensional Banach space B, by a suitable vector in a

 high-dimensional Euclidean space.9 I have programmed the nested fixed point
 algorithm on the IBM-PC, and used it to compute fixed points of several hundred

 dimensions. The contraction property guarantees that the Newton-Kantorovich

 iteration is numerically well-conditioned so that the resulting fixed point is

 9 Theorems 1 and 2 implicity assume that the fixed point EVli is computed exactly. A referee has
 pointed out that if EV0 can only be computed approximately, the choice of discretization may affect
 the asymptotic distribution of the parameter estimates. The referee suggests expanding the number
 of grid points in the discretization as a function of the sample size in order to deduce the correct
 asymptotic distribution. The point is well-taken: I think this suggestion is an important area for
 further research.
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 1014 JOHN RUST

 TABLE IV

 APPROXIMATE SPEED OF THE NESTED FIXED POINT ALGORITHM WRITTEN IN

 GAUSS FOR THE IBM-PC

 Fixed point timeb (90 dimensions to tolerance 10-16) 60seconds

 Function evaluation and moment matrix time (16,000 bus/month obs.) 180 seconds

 Total time required per likelihood function evaluation 240 secondsa

 a During line search, we do not require computation of the moment matrix of first derivatives, resulting in a savings of 30 seconds

 Thus approximately 210 seconds are required per likelihood function evaluation during line search.
 b The fixed point algorithm can run up to 4 times faster by using special linear equation algorithms which account for the bandec

 structure of the transition probability matrix used to compute the Newton-Kantorovich iterations. The results here used a genera
 Crout decomposition algorithm to solve the linear system taking no account of the special structure of the problem.

 insensitive to round-off-errors as long as /8 is less than 1. The performance of

 the algorithm for the 90-dimensional fixed point problem solved in Section 5 is
 presented in Table IV. Using standard linear algebra routines written in the Gausd

 programming language, the nested fixed point algorithm can compute a 90-

 dimensional fixed point to within 10-16 in two Newton-Kantorovich iterations
 in an average of 60 seconds. Using the full data set with approximately 16,OOC

 bus/month observations, the time required to evaluate the likelihood and compute

 the moment matrix of first derivatives averaged about four minutes. Thus, internal
 computation of the fixed point amounted to about 1/4 of the total time required

 for each likelihood function evaluation. Notice that these timings are based on
 an algorithm which ignores the special banded structure of the Markov transition

 matrix of the regenerative optimal stopping problem. If I use special band-matrix
 linear algebra routines which exploit this special structure, I can compute the

 fixed point in less than 30 seconds. For details about computation using the

 nested fixed point algorithm, see Rust (1985b).10

 5. APPLYING THE NESTED FIXED POINT ALGORITHM TO BUS ENGINE

 REPLACEMENT

 In this section I generalize the regenerative optimal stopping model presented

 in Section 3, eliminating restrictive assumptions about functional form and
 incorporating unobserved state variables. The regenerative stochastic process

 {it, x,} derived from the solution to this more general model has no closed-form

 solution, but can be estimated using the nested fixed point algorithm described

 in Section 4. In terms of the general approach of Section 4 the choice set is

 binary, C(x,) = {0, 1}. I incorporate unobserved state variables by assuming that

 unobserved costs {I (O), e,(1)} follow a specific stochastic process, to be described
 below. Let RC denote the expected cost of a replacement bus engine. In terms

 of my earlier notation, RC = P - P and I can write Harold Zurcher's implied

 'O At least four other studies have constructed computable maximum likelihood algorithms which,
 similar to the nested fixed point algorithm, require internal computation of the likelihood function,
 as well as its value. The studies by Gotz and McCall (1986), Miller (1984), Pakes (1986), and Wolpin
 (1984) are, to my knowledge, the first examples of estimable econometric models which are derived
 from discrete stochastic control problems which do not have closed-form solutions.
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 AN EMPIRICAL MODEL OF HAROLD ZURCHER

 utility function as follows:

 (5.1) u(X , i, + , (i) -RC -c(O, 0) + e,(1) if i=1,
 18iJ..c(xt 0i)+8 (O) if i = 0.

 I relax the restrictive functional form assumptions of Section 3 by allowing
 monthly mileage (x,+I-x,) to have an arbitrary parametric density function g,
 which implies a transition density of the form

 g(xt+ - Xt, 03) if it = 0,
 (5.2) p(x,+lx,, i, , 03)- {g(x,+t - 0, 3) if it = 1-

 If i, is fixed at 0, formula (5.2) implies that total bus mileage follows a random
 walk (with drift), where monthly incremental mileage is given by the density g
 with support on (0, oo). When the behavior of the optimal control i, =f(x,, t,, 0)
 is taken into account, (5.2) defines a regenerative random walk for the controlled
 process {x,}.

 In summary, the data consist of {im, x,"} (t = 1,..., T; m = 1,..., M) where
 i' is the engine replacement decision in month t for bus m and x" is the mileage
 since last replacement of bus m in month t. I assume that the data are a realization
 of a controlled Markov process generated from the solution to the infinite horizon
 stochastic control problem (4.1). My procedure is to estimate the unknown
 parameters 0 = (/3, 01, RC, 03) by maximum likelihood using the nested fixed
 point algorithm. To do this I had to (i) discretize the state variable x, to enable
 me to compute the fixed point EVo on the IBM-PC, (ii) specify functional forms
 for c, q, and g. I discretized mileage into 90 intervals of length 5,000, which
 implies that the fixed point EVo is an element of the Banach space B = R90. Using
 the discretized mileage data, the distribution g reduces to a multinomial distribu-
 tion on the set {0, 1, 2}, corresponding to monthly mileage in the intervals [0, 5000),
 [5000, 10,000) and [10,000, +oo), respectively. Thus, the distribution is completely
 specified by two parameters (030, 031). The functional forms for c which I estimated
 include (i) polynomial: c(x, 01) = 1O x+ 012x2+ 013x3, (ii) exponential: c(x, 0)) =
 01 exp(012x), (iii) hyperbolic: c(x, 0j)= Oj/(91-x), and (iv) square root
 c(x, 01) = 0jVi~x. The exponential and hyperbolic forms were estimated under the
 hypothesis that costs are a convex function of mileage, as opposed to the square
 root form which implies a concave cost function. I included the polynomial form,
 which can be concave, convex, or both, in order to check that my results were
 not artifacts of restrictive a priori assumptions about functional form. The disad-
 vantage of the polynomial form is that collinearity among the terms can lead to
 imprecise estimates of the coefficients (012, 12, 013). Notice that none of the
 specifications for c include a constant term. This is due to the fact that the
 absolute level of c is not identified since subtracting a constant from the utility
 function (5.1) will not affect the choice probabilities. Clearly, the most we can
 hope to identify is the value of the change in operating costs as a function of
 mileage, so I normalize by setting c(0, 0) = 0.

 I assume that the unobservable state variables {(,(0), £,(1)} obey an i.i.d.
 bivariate extreme value process, with mean normalized to (0, 0) and variance
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 JOHN RUST

 normalized to (Vr2/6, vr2/6). £,(0) should be interpreted as an unobserved com-
 ponent of maintenance and operating costs for the bus in period t. A large negative
 value for E,(0) could be interpreted as an unobserved component failure which
 sends the bus into the shop for repair, whereas a large positive value could be
 interpreted as a bus driver's report that the bus is operating smoothly. e,(1)
 should be interpreted as an unobserved component of cost associated with
 replacing an old bus engine with a newly rebuilt engine. A large negative value
 for E,(1) could indicate that all available service bays in the company shop are
 occupied, or alternatively, that there are no available rebuilt engines at time t.
 A large positive value for E,(1) could indicate empty service bays and surplus
 inventories of rebuilt engines."1 Neither the location nor the scale of these observed
 costs are identifiable without additional information, the reason for my arbitrary
 normalizations of the mean and variance. Later I will use data on the cost of

 replacement engines given in Table III to identify the scale of unobserved costs
 {£,(0), £,(1)}.

 The estimation procedure consists of three stages corresponding to each of the
 likelihood functions [1, [2, and [f, where {f is the full likelihood function given
 in (4.15), and [1 and [2 are "partial likelihood" functions given by

 T

 (5.3) [1(X, ...,XT, i1,, iT xo, io, 0)= [ p(xt X_-1, it-1, 03),
 t=l

 T

 (5.4) [2(X1,..,XT, il,.., iTI0)= I P(itIx, 0).
 t=l

 The first stage is to estimate the parameters 03 of the transition probability
 p(xt+I x,, it, d3) using the likelihood function 'f. This stage does not require
 computation of the fixed point EVo, and reduces to a standard parametric
 maximum likelihood problem. One can easily show (using the "principle of
 conditionality", Cox and Hinkley (1974)) that the resulting partial likelihood
 estimator is consistent and asymptotically normally distributed. Given our dis-
 cretization of the state space, this transition probability is fully specified by two
 parameters (030, 031) where 03 = Pr {x,+l = x, +j x,, i = 0}, j = 0, 1.
 The results of the stage 1 estimation of 03 are presented in Tables V and VI .

 Table V includes a likelihood ratio test of the hypothesis that the mileage process
 P(Xt+ I x,, it, 03) is the same for each bus within a given bus group. As can be
 seen from the bottom row of Table V, there is no evidence against this hypothesis.

 1 Note that I have implicitly assumed that the stochastic processes {x, ej} are independently
 distributed across different buses, j. In a perceptive comment, a referee noted that this assumption
 may not be valid if Zurcher is attempting to optimize the use of his service bays. A lack of available
 service bays may cause Zurcher to simultaneously delay servicing several buses in need of new
 engines. This induces correlation across j in the stochastic processes for {x-', eJ}. While I think this
 is a useful insight, I think its impact is minor relative to other sources of specification error, particularly
 relative to assumption (CI). To properly handle the referee's problem, I would need to formulate a
 more complicated model of joint maintenance operations, including optimal scheduling of buses to
 service bays. Given my limited data set, this more ambitious model is beyond the scope of this paper.
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 AN EMPIRICAL MODEL OF HAROLD ZURCHER 1017

 TABLE V

 WITHIN GROUP ESTIMATES OF MILEAGE PROCESS

 WITHIN GROUP HETEROGENEITY TESTS

 (Standard errors in parentheses)

 Group I Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Grouip 8
 1983 1981 1979 1975 1974 1974 1972 1972

 Grumman Chance GMC GMC GMC (8V) GMC (6V) GMC (8V) GMC (6V)

 031 .197 .391 .307 .392 .489 .618 .600 .722
 (.021) (.035) (.008) (.007) (.013) (.014) (.010) (.009)

 032 .789 .599 .683 .595 .507 .382 .397 .278

 (.021) (.035) (.008) (.007) (.013) (.014) (.010) (.009)
 033 .014 .010 .010 .013 .005 .000 .003 .000

 (.006) (.007) (.002) (.002) (.002) (0) (.001) (0)
 Restricted

 Log, Likelihood -203.99 -138.57 -2219.58 -3140.57 -1079.18 -831.05 -1550.32 -1330.35
 Unrestricted

 Log Likelihood -187.71 -136.77 -2167.04 -3094.38 -1068.45 -826.32 -1523.49 -1317.69
 Likelihood

 ratio test
 statistic 32.56 3.62 105.08 92.39 21.46 9.46 53.67 25.31

 Degrees of

 Freedom 42 9 141 108 33 18 51 34
 Marginal

 Significance
 Level .852 .935 .990 .858 .939 .948 .372 .859

 TABLE VI

 BETWEEN GROUP ESTIMATES OF MILEAGE PROCESS

 BETWEEN GROUP HETEROGENEITY TESTS

 (Standard errors in parentheses)

 1,2,3 1,2,3,4 4,5 6,7 6,7,8 5,6,7,8 FullSample

 031 .301 .348 .417 .607 .652 .618 .475

 (.007) (.005) (.006) (.008) (.006) (.006) (.004)
 032 .688 .639 .572 .392 .347 .380 .517

 (.007) (.005) (.007) (.008) (.006) (.006) (.004)
 033 .011 .012 .011 .002 .001 .002 .007

 (.002) (.001) (.001) (.001) (.004) (.001) (.000)
 Restricted

 Log Likelihood -2575.98 -5755.00 -4243.73 -2384.50 -3757.76 -4904.41 -11,237.68
 Unrestricted

 Log Likelihood -2491.51 -5585.89 -4162.83 -2349.81 -3668.50 -4735.95 -10,321.84
 Likelihood
 ratio test 168.93 338.21 161.80 69.39 180.52 336.93 1,831.67
 statistic

 Degrees of
 Freedom 198 309 144 81 135 171 483

 Marginal
 Significance
 Level .934 .121 .147 .818 .005 1.5E- 17 7-7E-10
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 1018 JOHN RUST

 Table VI shows the extent to which buses in different groups can be pooled. One
 can see that although bus groups 1, 2, and 3, and possibly 6 and 7, appear
 homogeneous, further aggregation of bus groups appears to be contra-indicated
 by the data. On the basis of these results I decided to pool groups 1, 2, and 3
 and estimate group 4 separately.

 The maintained hypothesis that bus mileage follows a regenerative random
 walk is examined in Table VII. Under the random walk hypothesis, the coefficients

 13 and /2 in the regression

 (5.5) Min, = fl0 + fl ImM,i - + YitJ2+ ei,

 should converge to zero, where mi, x - x,,_1 is the mileage travelled in month
 t by bus i and yi, are other explanatory variables. However, if there are unobserved
 bus-specific differences in monthly mileage, then ei, = ai + ui, and it is well known
 that OLS estimates of /31 will be upward biased. Consistent estimates of /31 and
 ,/2 can be obtained from the fixed-effect regression

 (5.6) Mit - hi-13I(Mit- -'i) + (Yit-Yi)32 + eit-ei,

 where ni, gi, and e, are the time averages of mi,, yi, and ei,. The significance of
 the coefficient /31 for lagged mileage in the fixed effect regressions in Table VII
 is inconsistent with the random walk hypothesis, suggesting a higher order Markov
 process for bus mileage. However, when I performed similar fixed effect logit
 estimations using the discretized data, lagged mileage was insignificantly different
 from zero at the 1 per cent level. This discrepancy is likely due to the loss of
 information inherent in discretizing the underlying continuous mileage data.
 Given that I am estimating the structural model using the discretized data, I

 TABLE VII

 FIXED EFFECTS REGRESSION RESULTS DEPENDENT VARIABLE:
 MONTHLY MILEAGE (LESS BUS-SPECIFIC MEAN MILEAGE)

 (Sample: Bus Groups 1-4)

 Marginal
 Variable Estimate Standard Error t-Statistic Significance Level

 December -135.26 119.13 -1.13 0.256
 January 203.79 119.22 1.71 0.087
 February -216.08 119.27 -1.81 0.070
 March -167.23 119.56 -1.40 0.162
 April -12.00 119.18 -0.10 0.920
 May -111.28 123.09 -0.90 0.364
 June -185.79 127.39 -1.46 0.145
 July 12.77 127.07 0.10 0.920
 August 103.18 121.50 0.85 0.393
 September -104.67 120.55 -0.87 0.383
 October -8.42 120.55 -0.07 0.944
 Time 0.6755 2.52 0.26 0.792
 Post 1979 Dummy 308.04 102.67 3.00 0.003
 Odometer -0.00168 0.00093 -1.83 0.067
 Mileage (t-2) 0 .17949 0.02664 6.74 0.000
 Mileage (t- 1) 0 .41807 0.02724 15.37 0.000
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 AN EMPIRICAL MODEL OF HAROLD ZURCHER 1019

 decided to proceed despite the negative regression results for the underlying "raw
 data."

 Using the estimates of 03 from the likelihood function 1l as initial consistent
 starting values, in stage 2 I estimated the remaining structural parameters

 (,3, 01, RC) using the partial likelihood function {2 given in equation (5.4).
 Maximization of this likelihood function requires internal calculation of the fixed
 point EV0 at each evaluation of the likelihood according to the nested fixed point
 algorithm outlined in Section 4. The final stage 3 estimation used the initial
 consistent estimates of 0 computed in stages 1 and 2 in order to produce efficient
 maximum likelihood estimates using the full likelihood function (f This estimator
 also yields a consistent estimator of the asymptotic covariance matrix for 0. Note
 that the estimated covariance matrix for the stage 2 estimates is not guaranteed
 to be consistent due to the use of the estimated values of 03 instead the true value

 30*. However, after computing the fully efficient estimates using If I found that
 the estimated covariance matrix was almost perfectly block diagonal, and the
 parameter estimates and standard errors produced using {2 were nearly identical
 to the fully efficient estimates. Nevertheless, I present the efficient stage 3 estimates
 below.

 The stage two estimation results from the nested fixed point algorithm for the

 partial likelihood function P2 presented in Table VIII. I estimated the structural
 model P(i I x, 0) on various subsamples of the data set and for various parametric
 specifications of the cost function c(x, 01), yielding a number of alternative models
 which are summarized in Table VIII. In order to test for possible heterogeneity
 biases, I estimated separate models for the new buses (groups 1, 2, 3) and the
 older 1975 buses (group 4) and compared the results to the pooled model (groups
 1, 2, 3, 4). By comparing the log-likelihood value of the pooled model (restricted
 log-likelihood) to the sum of the log-likelihoods of groups 1, 2, 3, and 4 separately

 (unrestricted log-likelihood), I could calculate likelihood ratio tests of the
 hypothesis of parameter homogeneity between groups. I also estimated a variety

 of alternative functional forms for the cost function c(x, 01) in order to insure
 that my conclusions were not artifacts of restrictive a priori choices of functional
 form. A completely nonparametric estimation was performed which allowed

 c(x, 01) to be any function. This is essentially equivalent to estimating a 90-
 dimensional coefficient vector 01 = (01,l, .. I 01,90) where 01, = c(x, 0,), x =
 1, ... , 90. These estimates yield a nonparametric estimate of the hazard function

 P(1 I x, 0) (equal to the sample average of replacements in each mileage category
 x), which in turn produces the maximum attainable value for the log-likelihood
 function. Each of the parametric models can be regarded as restricted versions
 of the nonparametric model. For example, the cubic model (with 3 free para-
 meters) can be regarded as the nonparametric model conjoined with 87 linear
 restrictions on the coefficients . 01,90). By comparing the log-likelihood
 values of a particular parametric model to the log-likelihood value of the nonpara-
 metric model, I could perform a likelihood ratio specification test of my a priori
 choice of functional form. As you can see from Table VIII, even with a sample
 size of 8,156 observations this likelihood ratio or "Kullback-Leibler"
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 1020 JOHN RUST

 TABLE VIII

 SUMMARY OF SPECIFICATION SEARCHa

 Bus Group

 Cost Function 1,2,3 4 1,2,3,4

 Cubic Model 1 Model 9 Model 17

 c(x, 61) = ol6x+ 612x2+ 013x3 -131.063 -162.885 -296.515
 -131.177 -162.988 -296.411

 quadratic Model 2 Model 10 Model 18

 c(x, o6) = ol6x + 612x2 -131.326 -163.402 -297.939
 -131.534 -163.771 -299.328

 linear Model 3 Model 11 Model 19

 c(x, 6I) = ollx -132.389 -163.584 -300.250
 -134.747 -165.458 -306.641

 square root Model 4 Model 12 Model 20

 C(X9 01) = 01 WX -132.104 -163.395 -299.314
 -133.472 -164.143 -302.703

 power Model 5b Model 13b Model 21b

 c(x, 1) = ol6x012 N.C. N.C. N.C.
 N.C. N.C. N.C.

 hyperbolic Model 6 Model 14 Model 22
 c(x, 6I) = o6Il/(91 - x) -133.408 -165.423 -305.605

 -138.894 -174.023 -325.700

 mixed Model 7 Model 15 Model 23

 C(X, 01) = 01 1/(91 - X) + 012VI -131.418 -163.375 -298.866
 -131.612 -164.048 -301.064

 nonparametric Model 8 Model 16 Model 24
 c(x, 6I) any function -110.832 -138.556 -261.641

 -110.832 -138.556 -261.641

 First entry in each box is (partial) log likelihood value f2 in equation (5.2)) at /3 =.9999. Second entry is partial
 log likelihood value at /3 = 0.

 b No convergence. Optimization algorithm attempted to drive 1 2 -* 0 and 0, -* +00.

 specification test cannot reject any of the particular parametric functional forms
 which I tried. As a result, I adopted more intuitive criteria in order to select a
 "best fit" model from the array of alternative functional forms. My decision was

 a compromise between the objectives of (i) choosing the functional form with
 the highest likelihood value, (ii) choosing a functional form which is par-
 simonious, yet consistent with my priors and other nonquantitative information
 about the bus replacement problem. These criteria lead me to choose the linear

 and square root functional forms as the "best fit" specifications.
 Tables IX and X present the structural parameter estimates computed by

 maximizing the full likelihood function [f using the nested fixed point algorithm.
 In Table IX I present structural estimates for the unknown parameters (RC, 01)
 of the linear specification for two alternative discount factors, p = 0 and p = .9999.
 The estimation results for /3 = 0 can be interpreted as a "myopic model" of bus
 engine replacement, under which a replacement occurs only when current oper-

 ating costs c(x,, 01) exceed the current cost of replacement RC + c(O, 01). The
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 AN EMPIRICAL MODEL OF HAROLD ZURCHER 1021

 TABLE IX

 STRUCTURAL ESTIMATES FOR COST FUNCTION C(X, 01) = .001011X

 FIXED POINT DIMENSION = 90
 (Standard errors in parentheses)

 Parameter Data Sample Heterogeneity Test
 LR Marginal Discount Estimates/ Groups 1, 2, 3 Group 4 Groups 1, 2, 3, 4 Statistic Significance

 Factor Log-Likelihood 3864 Observations 4292 Observations 8156 Observations (df = 4) Level
 3=.9999 RC 11.7270 (2.602) 10.0750 (1.582) 9.7558 (1.227) 85.46 1.2E - 17

 oil 4.8259 (1.792) 2.2930 (0.639) 2.6275 (0.618) 030 .3010 (.0074) .3919 (.0075) .3489 (.0052) 031 .6884 (.0075) .5953 (.0075) .6394 (.0053)
 LL -2708.366 -3304.155 -6055.250

 3 = 0 RC 8.2985 (1.0417) 7.6358 (0.7197) 7.3055 (0.5067) 89.73 1.5E- 18

 oil 109.9031 (26.163) 71.5133 (13.778) 70.2769 (10.750)
 030 .3010 (.0074) .3919 (.0075) .3488 (.0052) 031 .6884 (.0075) .5953(.0075) .6394 (.0053)

 LL -2710.746 -3306.028 -6061.641
 Myopia test: LR 4.760 3.746 12.782

 Statistic
 (df = 1)

 ,8 = 0 vs. /3 = .9999 Marginal 0.0292 0.0529 0.0035

 Significance

 Level
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 1022 JOHN RUST

 TABLE X

 STRUCTURAL ESTIMATES FOR COST FUNCTION C(X, 01) = .001611X

 FIXED POINT DIMENSION = 175

 (Standard errors in parentheses)

 Parameter Data Sample Heterogeneity Test
 LR Marginal Discount Estimates Groups 1, 2, 3 Group 4 Groups 1, 2, 3, 4 Statistic Significance

 Factor Log-Likelihood 3864 Observations 4292 Observations 8156 Observations (df = 6) Level

 /3 =.9999 RC 11.7257 (2.597) 10.896 (1.581) 9.7687 (1.226) 237.53 1.89E-48

 Oil 2.4569 (.9122) 1.1732 (0.327) 1.3428 (0.315) 030 .0937 (.0047) .1191 (.0050) .1071 (.0034) 031 .4475(.0080) .5762 (.0075) .5152 (.0055) 032 .4459 (.0080) .2868 (.0069) .3621 (.0053) 033 .0127 (.0018) .0158 (.0019) .0143 (.0013)
 LL -3993.991 -4495.135 -8607.889

 /3 =0 RC 8.2969 (1.0477) 7.6423 (.7204) 7.3113 (0.5073) 241.78 2.34E - 49

 Oil 56.1656 (13.4205) 36.6692 (7.0675) 36.0175 (5.5145)
 030 .0937 (.0047) .1191 (.0050) .1070 (.0034) 031 .4475 (.0080) .5762 (.0075) .5152 (.0055) 032 .4459 (.0080) .2868 (.0069) .3622 (.0053) 033 .0127 (.0018) .0158 (.0019) .0143(.0143)

 LL -3996.353 -4496.997 -8614.238

 Myopia tests: LR 4.724 3.724 12.698

 Statistic
 (df = 1)

 ,3 = 0 vs. /3 = .9999 Marginal 0.0297 0.0536 .00037

 Significance

 Level
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 AN EMPIRICAL MODEL OF HAROLD ZURCHER 1023

 estimation results for 3 =.9999 (a discount factor which corresponds to a very
 low annual real interest rate of .1 per cent) can be interpreted as a "dynamic
 model" of bus engine replacement which recognizes that replacing a bus engine
 is an investment which not only reduces current costs, but future costs as well.
 The "myopia test" on the bottom two rows of Table IX shows that the data reject
 the hypothesis that Harold Zurcher behaves as a myopic decisionmaker: the
 dynamic model with 8 =.9999 produces a statistically significant improvement
 in the ability of the model to fit the data. Although the data clearly reject the
 myopic model, I was not able to precisely estimate the discount factor ,3. Changing
 ,3 to .98 or .999999 produced negligible changes in the likelihood function and
 parameter estimates of (RC, All)- The reason for this insensitivity is that ,3 is
 highly collinear with the replacement cost parameter RC: both parameters induce
 similar effects on replacement behavior. For example, raising RC tends to
 postpone engine replacement, an effect which can also be achieved by lowering
 the discount factor ,3. Thus, if I treated ,3 as a free parameter, the estimated
 information matrix was nearly singular, causing difficulties for the maximization
 algorithm. I did note a systematic tendency for the estimated value of ,3 to be
 driven to 1. This curious behavior may be an artifact of computer round-off
 errors, or it could indicate a deeper result. By Abel's Theorem (also known as
 the final value theorem for Z-transforms (Howard (1971)), we have limq,1 (1 -
 /83) EZ,=0, ut = limT,0 (1/ T) ET=o U, (for a formal proof of this result in the context
 of stochastic dynamic programming models, see Bhattacharya and Majumdar
 (1986)). This suggests that if Harold Zurcher is actually minimizing long run
 average costs, an estimation algorithm based on discounted costs would use Abel's
 theorem and attempt to drive ,3 to 1. This might be what's happening here.12

 The "heterogeneity test" in the last two columns of Table IX shows that the
 data reject the hypothesis that the structural coefficients (RC, 011) are the same
 for bus groups 1, 2, 3, and 4. The data show that Zurcher perceives the new
 GMC model 203 buses to have both higher engine replacement costs and a faster
 rate of increase in maintenance costs as a function of accumulated mileage. Using
 the replacement cost data from Table III, I can actually identify the scale of the
 coefficients (RC, All). For groups 1, 2, 3 the average observed replacement cost
 was $9499. Computing the ratio of the actual to estimated replacement cost we
 obtain a scale estimate of cr = $9499/11.7257. Multiplying this scaling constant
 times 01l I obtain a dollar estimate for 01l for groups 1, 2, 3 of $3.75. Thus, the
 estimates imply that Zurcher perceives average monthly maintenance costs to
 increase $3.75 for every 5,000 accumulated miles on the bus. Thus, the expected
 maintenance costs for a bus with 300,000 miles are $225.00 per month higher
 than for a bus with a newly replaced engine. In comparison, monthly maintenance

 12 The identification of ,8 depends on a priori specification of the utility function u. Actually ,3 is
 nonparametrically unidentified: in the absence of a priori knowledge of the form of u it is impossible
 to infer 8. This can be seen in Table VIII where the difference in the log-likelihoods for 1 = 0 vs.
 13 =.9999 disappears as I generalize the specification of the cost function, c. While this theoretical
 result might appear disturbing at first, on reflection it is clear we often do have substantial a priori
 information about 18 itself. In the case of Zurcher, we know that 18 must be "large" because 18 = C
 implies an implausibly large rate of increase in monthly operating costs. See Figure 2.
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 1024 JOHN RUST

 costs for buses in group 4 are estimated to increase only $1.70 for every 5000
 accumulated miles on the bus. These results appear to resolve the puzzle raised

 in Section 2. The reason that bus engines are replaced earlier on the newer 1979

 GMC buses despite their 25 per cent higher replacement cost seems to be due
 to Zurcher's perception that monthly maintenance costs for the new buses increase

 more than twice as fast as a function of mileage.

 At this point it is reasonable to ask: how sensitive are the inferences of this
 model with respect to (a) choice of cost function, and (b) choice of grid size for
 the discretization of bus mileage? Table X, which presents estimation results for

 model 11 with a fixed point dimension of 175, gives us some insight into the
 latter question. By dividing mileage into nearly twice the number of cells (of
 length 2,571 as opposed to 5,000) we obtain a multinomial distribution for monthly

 mileage which now depends on 4 parameters: 03j = Pr {xt+1= xt +j xt, i =0,
 j =0, 1, 2, 3. At first sight, Table X seems to show significant changes in the

 parameter estimates with a significant deterioration in the value of the log-

 likelihood function. However on closer inspection we see that both choices of
 grid size fit the data nearly identically. The decrease in the log-likelihood function
 is due to the fact that the finer grid size produces more observations in low
 probability cells (corresponding to parameters 030 and 034) which have low
 log-likelihood values. Notice also that while the estimates of the cost function

 parameter 01 I change significantly, the estimates of RC are nearly identical using
 either grid size. Furthermore, the cost function parameter 01 behaves exactly as
 we would expect due to a halving of the grid size: it is cut almost exactly in half.
 This produces estimated value and hazard functions which are nearly identical

 for either choice of grid size. I ran plots of these functions for the 175-dimensional

 case and the plots were visually identical to the plots for the 90-dimensional case

 presented in Figures 2 and 3. I also ran a model with a 45-dimensional fixed

 point and as expected the coefficient estimates of RC were nearly unchanged but

 the estimates of 01 were nearly double the estimates in the 90 dimensional case.
 Notice also that the "myopia test" statistics are nearly identical to the values in

 the 90-dimensional case. Only the heterogeneity test statistics change significantly.

 This is simply an indication of the increased information content obtained by

 finer discretization of the mileage distribution. Nearly the entire increase in the

 heterogeneity test statistics can be ascribed to the increased ability to discriminate

 among mileage distributions using a finer discretization of the mileage variable.

 Thus, I conclude that my inferences are basically unaffected by the choice of

 discretization. The parameter estimates may change significantly, but only in such

 a way as to maintain a constant estimate of the value and hazard functions which

 are basically invariant to the choice of grid size.

 I now turn to an analysis of the sensitivity of my results with respect to the

 choice of cost function, c. The estimation results for the square root form of the

 cost function turned out to be nearly identical to the linear case. The change in

 functional form yields slightly higher likelihood values, but does not otherwise
 alter any of the basic qualitative results found in the linear case. Figure 2 displays
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 AN EMPIRICAL MODEL OF HAROLD ZURCHER 1025

 Estimated Value Functions
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 1026 JOHN RUST

 the estimated value function for the linear case, model 11 (note that the value
 function is shown in terms of the original unscaled coefficient estimates). Figure
 3 displays the estimated hazard function for model 11, including the nonpara-

 metric and myopic (,3 = 0) hazard functions for comparison. We can see that the
 linear specification leads to a gently rising hazard function that appears to flatten

 out at a hazard rate of about 7 per cent at 450,000 miles. These estimates stand
 in marked contrast to the myopic model which implies a rapidly rising
 hazard function, with a hazard rate of over 20 per cent at 450,000 miles. It is
 unwise to use the nonparametric hazard estimate to try to decide whether or not
 the tail behavior of the dynamic model is more realistic than the tail behavior
 of the myopic model. Almost all of the observations are concentrated in bus
 mileages less than 100,000 and in fact we have very few observations for mileages
 beyond 300,000. As a result, the upper tail of the nonparametric hazard is estimated
 very erratically, leading ultimately to hazard rate estimates of 0 or 1 depending
 upon whether a single bus in a high mileage cell did or did not experience a
 replacement. This erratic "Dirac" behavior of the nonparametric hazard makes
 it unwise to try to infer anything about the precise nature of the tail behavior of
 the true underlying hazard function. Although the problem can be alleviated
 somewhat by choosing wider "windows" over which the nonparametric hazard
 is calculated, the basic problem is due to lack of observations in the upper tail
 and can only be addressed by increasing the size of the sample.

 The lack of observations is reflected in the estimated value and hazard functions

 for the cubic and quadratic specifications. A positive estimated coefficient 013 on
 the X3 term in the cubic model leads to a sharply rising hazard function beyond
 300,000 miles. A negative estimated coefficient 012 for the quadratic model leads
 to the opposite behavior, leading to a hazard rate which actually decreases after
 350,000 miles. The wide divergence in the tail behavior of these two specifications
 was not accompanied by a significant change in the value of the log-likelihood
 function. Although the hazard function is precisely estimated until about 300,000

 miles, the tail is essentially an artifact of the particular functional form chosen

 for c(x,, 0k). My prior belief that the hazard function should never decrease leads
 me to reject the quadratic specification, and conversations with Harold Zurcher
 lead me to reject the cubic model with its sharply rising hazard function. When
 asked to choose the hazard function which best represents his engine replacement
 behavior, Zurcher chose the hazards derived from the linear and square root
 specifications which flatten out at about 7 or 8 per cent after 350,000 miles.
 According to Zurcher, monthly maintenance costs increase very slowly as a
 function of accumulated mileage. If the mechanical reliability of a bus deteriorates

 only very gradually with accumulated mileage, then it makes sense that the hazard
 would flatten out instead of abruptly increasing after 400,000 miles as it does in

 the myopic and cubic models. Remember that the alternative to not replacing a
 bus engine is to replace individual components at time of failure. Eventually
 such a "replace on failure" strategy yields bus engines with a significant fraction
 of new components, even though some components may have significant accumu-
 lated mileage. Thus, even though a given bus may have gone 400,000 miles since
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 AN EMPIRICAL MODEL OF HAROLD ZURCHER

 last engine replacement, the cumulative maintenance on the bus significantly
 reduces the chance that it would suddenly "fall apart." These considerations
 ultimately lead me to reject the cubic and quadratic specifications and to choose
 the linear and square root forms as my "best fit" specifications.
 Although I have examined the sensitivity of my results with respect to choice

 of cost function and grid size, it is very difficult to assess the impact of the crucial
 Assumption (CI) used to produce a computationally tractable model. Recall that
 (CI) implies that e,+i is independent of e£ given x,. Thus, lagged {x,_j, i,_j} j 1
 do not "cause" i, conditional on the current observed state variable x,. This
 suggests the following specification test of Assumption (CI): include the lagged
 control variable i,_, as an explanatory variable in the choice model (4.13). If we
 let a be the coefficient of i,_4, then under the null hypothesis (CI), the maximum
 likelihood estimate of a should converge to zero with probability 1. Under the
 alternative that (CI) does not hold, E, and e,_, will not be independent given xt.
 Thus, in this case we would expect that the lagged control variable i,_ =
 f(x,_-, E,l, 0) will be correlated with the current unobserved state variable E,
 and hence, the estimated value of a will converge to a nonzero value. Table XI
 presents a Lagrange multiplier test of the hypothesis that a = 0.

 We can see from Table XI that for group 4 there is no strong evidence that
 (CI) is violated, while for groups 1, 2, and 3 and the combined groups 1-4 there
 is strong evidence that (CI) does not hold. The reason for rejection in the latter
 cases may be due to the presence of "fixed-effects" heterogeneity which induces
 serial correlation in the error terms. This suggests that by separating the buses
 into more homogeneous subgroups (such as group 4), we can minimize violations
 of (CI).

 I conclude with Figures 4 and 5 which display the confidence bands for the
 estimated value and hazard functions for model 11. Figure 4 shows a uniform
 95 per cent confidence band and a "one standard deviation band" about the
 estimated value function Vg, the latter which was derived by computing the
 standard deviation of Vs(x) at each point x. Interestingly, this "one standard
 deviation" band about the Banach-valued random element V/ contains the true

 TABLE XI

 LAGRANGE MULTIPLIER SPECIFICATION TESTS OF INDEPENDENCE ASSUMPTION (CI)"

 COST FUNCTION c(x, 1)= .00101 x
 FIXED POINT DIMENSION =90

 Discount

 Statistic Factor Groups 1, 2, 3 Group 4 Groups 1,2, 3, 4

 LM Statistic 3 =.9999 8.154 2.047b 21.425C
 3 = 0 27.086 33.174 60.250

 Marginal Significance /3 =.9999 0.0043 0.1526 3.68E-6
 Level = 0 1.96E - 7 8.44E - 9 1.54E- 9

 " Hypothesis test of a = 0, where a is coefficient of lagged control variable i,_ =f(x,_ , e, , 0) in choice probability formula (4.13).
 b Corresponding Wald and Likelihood Ratio test statistics are 2.073 and 1.267, respectively.
 c Corresponding Likelihood Ratio statistic is 17.416.

 1027
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 AN EMPIRICAL MODEL OF HAROLD ZURCHER 1029

 value function with probability 25.5 per cent as opposed to the 68.36 per cent

 probability for a standard univariate one standard deviation band. Similarly, the

 one standard deviation band about the estimated hazard function in Figure 5

 contains the true hazard function with probability 25.5 per cent. The discrepancy

 is explained by the fact that the standard deviation band is based on the univariate

 distribution of P(1 i| , 0), and VH(X) at a particular point x, which has no necessary

 connection to the distribution of P and V as elements of the Banach space B

 (for details on the derivations of the infinite dimensional asymptotic distributions

 of p and v, see Rust (1988a)). Notice how the one-standard deviation band

 diverges in the tail of the hazard function. This is yet one more indication of the

 lack of high mileage observations which prevents accurate inference of the tail

 behavior of the hazard function.

 The foregoing empirical results lead to two main conclusions: (i) the nested

 fixed point algorithm can be a practical, efficient, and numerically stable method

 for estimating certain structural models lacking closed-form solutions, (ii) the

 data are by and large consistent with my simple regenerative optimal stopping

 model of bus engine replacement. Despite the simplicity of the model, it leads

 to a wealth of interesting behavioral implications. In particular, the model can

 be used to perform a wide wide variety of "policy experiments" which forecast

 how changes in various structural parameters such as ,X, RC, and 03 affect the

 timing and frequency of bus engine investment. In Section 6 I show how this is

 done by deriving a demand curve for bus engine replacement.

 6. CALCULATING THE IMPLIED DEMAND FOR REPLACEMENT INVESTMENT

 I conclude by demonstrating the bottom-up approach to demand for replace-

 ment investment. Conceptually, the approach is quite simple. The replacement

 demand for a specific capital good is simply the sum of the replacement demands

 generated by individual decision makers. Multiplying the total replacement

 demand by the replacement cost RC of each capital good, I obtain a common

 unit of measurement, dollars, which allows me to sum over heterogeneous capital

 goods to obtain aggregate replacement investment.

 Thus, my problem reduces to computing replacement demand for specific

 capital goods and specific decision makers. In the case of Harold Zurcher, annual

 demand for bus engines is a random function d(RC) given by the sum

 12 M

 (6.1) d(RC)- LLIt
 t=1 i=1

 where each i"m is a realization of the regenerative process {i,m, x7m}. Given an
 initial distribution im(xm, im) for the initial states of each bus m, I can compute
 the probability distribution of the random function d(RC) using the controlled

 transition density P(i, I xt, 0)p(x, I Xt,1, it-1, 03) by integrating out the unnecessary
 state variables xt. Then, by varying bus engine replacement costs RC, I can trace
 out how the entire probability distribution for replacement investment varies as

 a function of replacement costs.
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 1030 JOHN RUST

 To simplify my presentation, I will focus on calculating the expected replace-
 ment demand function d(RC) = E{d(RC)}, which I expect to be a nicely
 behaved, downward sloping function of RC. Suppose that the initial distribution

 ir is the long run stationary (or equilibrium) distribution of the controlled process

 {i,, x,}. ir is given by the unique solution to the functional equation

 (6.2) ir(x, i) = P(i lX, 6)p(xjy, j, 03) T(dy, dj).
 y i

 From (6.2) you can see that the equilibrium distribution iT is an implicit function
 of the structural parameters 0, which I emphasize by the notation r. Under the
 additional hypothesis that the regenerative processes {im, xm'} and {ik, Xk} are

 independent if m 5 kg I obtain the following simple formula for d(RC):

 (6.3) d(RC) =12M fg ir(dx,1I).

 0

 Thus, the problem further reduces to computing the equilibrium distribution ir.
 Figure 6 presents the equilibrium distribution for model 11 in the form of the

 conditional densities of iro, 1rT(x 1) and irT(x 0). Using these densities, the
 predicted mean mileage at replacement is estimated to be 287,892 which is within
 half a standard deviation of the actual value of 257,336 in Table Ila. The predicted

 Equilibrium Distributions: Bus Mileage
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 value of mean mileage given that replacement hasn't yet occurred is 159,305
 which is also within half a standard deviation of the actual value of 134,862.
 Thus, use of a stationary distribution to compute replacement demand does not
 appear to be greatly at odds with the data.

 By parametrically varying replacement costs, I can trace out the equilibrium
 distribution ir, as a function of RC. In particular, using formula (6.3) I can
 compute the expected demand curve for replacement investment. Figure 7 presents
 the expected demand function d (RC) for model 11 for a fleet containing a single
 bus, M = 1. For comparison, I also present the implied demand curve for the
 static model with ,3 = 0. We can see significant differences in the predictions of
 the two models. As one might expect, the demand curve for the myopic model
 is much more sensitive to the cost of replacement bus engines, overpredicting
 demand at low prices, underpredicting demand at high prices. Notice, however,
 that the maximum likelihood procedure insures that both models generate the
 same predictions at the actual replacement cost of $4343.

 Figure 7 summarizes the value of the "bottom-up" approach to replacement
 investment. Since engine replacement costs have not varied much in the past,
 estimating replacement demand by a "reduced-form" approach which, for
 example, regresses engine replacements on replacement costs, is incapable of
 producing reliable estimates of the replacement demand function. In terms of
 Figure 7, all the data would be clustered in a small ball about the intersection
 of the two demand curves: obviously many different demand functions would
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 1032 JOHN RUST

 appear to fit the data equally well. The structural approach, on the other hand,

 efficiently concentrates additional information contained in the sequences

 {it,, x,} into estimates of a small number of primitive parameters. Despite the
 relatively small number of such parameters, we obtain a rich behavioral model

 that can be used to answer a wide range of "what if?" policy questions.13

 Department of Economics, University of Wisconsin-Madison, Madison,
 Wisconsin 53706, U.S.A.

 Manuscript received December, 1985; final revision received October, 1986.
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